DEVELOPMENT OF A SET OF PRIMERS FOR THE DIAGNOSIS OF OPHIOSTOMA FUNGI ASSOCIATED WITH DRYING PROCESSES OF ENGLISH OAK

UDC 577.212:632.4

  • Baranov Oleg Yurievich − DSc (Biological), Associate Professor, Academician-Secretary of the Department of Biological Sciences. National Academy of Sciences of Belarus (66, Nezavisimosti Ave., 220072, Minsk, Republic of Belarus); Professor, Department of Forest Protection and Wood Science. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: betula-belarus@mail.ru

  • Ivashchenko Lyubov Olegovna − Junior Researcher, Department of Forest Protection and Wood Science. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: lyba281997@mail.ru

Keywords: Ophiostoma fungi, Quercus robur, primer, desiccation, PCR.

For citation: Baranov O. Yu., Ivashchenko L. O. Development of a set of primers for the diagnosis of ophiostoma fungi associated with drying processes of English oak. Proceedings of BSTU, issue 1, Forestry. Nature Management. Processing of Renewable Resources, 2023, no. 1 (264), pp. 41–48. DOI: https://doi.org/10.52065/2519-402X-2023-264-05 (In Russian).

Abstract

Polymerase chain reaction (PCR) is a technology based on enzymatic amplification of DNA template in vitro, which is used for rapid detection, characterization and identification of various biological organisms. One of the most important stages in the PCR analysis is the development of primers that allow the most accurate diagnosis of the object under study. This article describes the technology for the development of oligonucleotide primers specific for phytopathogenic fungi of the family Ophiostomataceae Nannf., associated with the lesion of the vascular system of English oak Quercus robur L. The approach is based on the use of genus-specific DNA regions to create oligonucleotide sequences.

References

  1. Ragazzi A., Vagniluca S., Moricca S. European expansion of oak decline, involved microorganisms and methodological approaches. Phytopathol. Mediterr, 1995, vol. 34, pp. 207–226.
  2. Machacova M., Nakladal O., Samek M., Bat’a D., Zumr V., Peskova V. Oak Decline Caused by Biotic and Abiotic Factors in Central Europe: A Case Study from the Czech Republic. Forests, 2022, vol. 13 (8), p. 1223.
  3. Obzor lesopatologicheskogo i sanitarnogo sostoyaniya lesnogo fonda Respubliki Belarus’ za 2021 god i prognoz razvitiya patologicheskih processov v 2022 godu [Review of the forest pathological and sanitary state of the forest fund of the Republic of Belarus for 2021 and the forecast for the development of pathological processes in 2022]. Zhdanovichi, 2022. 84 р. (In Russian).
  4. Fedorov N. I. Lesnaya fitopatologiya [Forest phytopathology]. Minsk, BSTU Publ., 2004. 462 р. (In Russian).
  5. Harrington T. C. Biology and taxonomy of fungi associated with bark beetles. Beetle-pathogen interactions in conifer forests, 1993, vol. 25, pp. 37–58.
  6. Wingfield M. J., Slippers B., Wingfield B. D., Barnes I. The unified framework for biological invasions: a forest fungal pathogen perspective. Biological Invasions, 2017, vol. 19 (11), pp. 3201–3214.
  7. Gibbs J. N. The biology of ophiostomatoid fungi causing sapstain in trees and freshly cut logs. Ceratocystis and Ophiostoma. Taxonomy, ecology, and pathogenicity, 1993, vol. 474, pp. 153–160.
  8. Kamgan Nkuekam G., Wilhelm de Beer Z., Wingfield M. J., Roux J. A diverse assemblage of Ophiostoma species, including two new taxa on eucalypt trees in South Africa. Mycological progress, 2012, vol. 11 (2), pp. 515–533.
  9. Jankowiak R., Bilanski P., Strzalka B., Linnakoski R., Bosak A., Hausner G. Four new Ophiostoma species associated with conifer- and hardwood-infesting bark and ambrosia beetles from the Czech Republic and Poland. Antonie van Leeuwenhoek, 2019, vol. 112 (10), pp. 1501–1521.
  10. de Errasti A., de Beer Z. W., Coetzee M. P. A., Roux J., Rajchenberg M., Wingfield M. J. Three new species of Ophiostomatales from Nothofagus in Patagonia. Mycological Progress, 2016, vol. 15 (2), pp. 1–15.
  11. Shestibratov K. A., Baranov O. Yu., Subbotina N. M., Lebedev V. G., Panteleev S. V., Krutovsky K. V., Padutov V. E. Early detection and identification of the main fungal pathogens for resistance evaluation of new genotypes of forest trees. Forests, 2018, vol. 9 (12), pp. 732–740.
  12. Ma Z., Michailides T. J. Approaches for eliminating PCR inhibitors and designing PCR primers for the detection of phytopathogenic fungi. Crop Protection, 2007, vol. 26 (2), pp. 145–161.
  13. Dieffenbach C. W., Lowe T. M., Dveksler G. S. General concepts for PCR primer design. PCR methods appl., 1993, vol. 3 (3), pp. 30–37.
  14. Padutov A. V., Seredich M. O., Yarmolovich V. A., Pashkevich I. A., Baranov O. Yu. The use of PDAF markers for metagenomic analysis of microbiomes of insect pests of hardwoods in Belarus. Sovremennyye problemy lesozashchity i puti ikh resheniya: materialy II Mezhdunarodnoy nauchno-prakticheskoy konferentsii, posvyashchyonnoy 95-letiyu so dnya rozhdeniya professora Nikolaya Il’icha Fedorova i 90-letiyu kafedry lesozashchity i drevesinovedeniya [Modern problems of forest protection and ways to solve them: materials of the II International Scientific and practical Conference, dedicated 95th birthday of professor Nikolai Ilyich Fedorov and the 90th anniversary of the Department of Forest Protection and Wood Science]. Minsk, 2020, pp. 198–201 (In Russian).
  15. White T. J., Bruns T., Lee S., Taylor J. W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 1990, vol. 18 (1), pp. 315–322.
  16. Selochnik N. N., Pashenova N. V., Sidorov E., Wingfield M. J., Linnakoski R. Ophiostomatoid fungi and their roles in Quercus robur dieback in Tellermann forest, Russia. Silva Fenn., 2015, vol. 49 (5), p. 16.
  17. Aghayeva D. N., Wingfield M. J., Kirisits T., Wingfield B. D. Ophiostoma dentifundum sp. nov. from oak in Europe, characterized using molecular phylogenetic data and morphology. Mycological Research, 2005, vol. 109 (10), pp. 1127–1136.
  18. Halmschlager E., Kowalski T. Sporothrix inflata, a root-inhabiting fungus of Quercus robur and Q. petraea. Mycological Progress, 2003, vol. 2 (4), pp. 259–266.
  19. Taerum S. J., de Beer Z. W., Marincowitz S., Jankowiak R., Wingfield M. J. Ophiostoma quercus: An unusually diverse and globally widespread tree-infecting fungus. Fungal biology, 2018, vol. 122 (9), pp. 900–910.
  20. Aas T., Solheim H., Jankowiak R., Bilanski P., Hausner G. Four new Ophiostoma species associated with hardwood-infesting bark beetles in Norway and Poland. Fungal biology, 2018, vol. 122 (12), pp. 1142–1158.
  21. Gebhardt H., Kirschner R., Oberwinkler F. A new Ophiostoma species isolated from the ambrosia beetle Xyleborus dryographus (Coleoptera: Scolytidae). Mycological Progress, 2002, vol. 1 (4), pp. 377–382.
  22. Abd-Elsalam K. A. Bioinformatic tools and guideline for PCR primer design. African Journal of biotechnology, 2003, vol. 2 (5), pp. 91–95.
  23. Achyar A., Atifah Y., Putri D. H. In silico study of developing a method for detecting pathogenic bacteria in refillable drinking water samples. Journal of Physics: Conference Series, 2021, vol. 1940 (1), p. 012061. 
22.10.2022