ACTIVATION ENTROPY CHANGES OF MACROCYCLE PROTONATION OF THE FREE BASE 21-CH3-OCTAETHYLPORPHYRIN IN THE LOWEST EXCITED SINGLET S1 STATE

UDC 535.37+541.65+543.4

  • Kruk Mikalai Mikalaevich − DSc (Physics and Mathematics), Associate Professor, Head of the Department of Physics. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: m.kruk@belstu.by

Key words: porphyrin, acid-base equilibria, entropy, enthalpy.

For citation: Kruk M. M. Activation entropy changes of macrocycle protonation of the free base 21-СН3-octaethylporphyrin in the lowest excited singlet S1 state. Proceedings of BSTU, issue 2, Chemical Engineering, Biotechnologies, Geoecology, 2022, no. 2 (259), pp. 150–155 (In Russian). DOI: https://doi.org/10.52065/2520-2669-2022-259-2-150-155.

Abstract

The acid-base equilibria of the 21-CH3,23-H,2,3,7,8,12,13,17,18-octaethylporphyrin in the ground S0 and lowest excited singlet S1 states were studied using the Foerster cycle and spectrofluorometric titration methods. It has been experimentally established that the рKа values in the ground and excited states are equal, while the estimate for the Foerster cycle is ΔрKа = –1,8. The discrepancy is explained by the violation of the activation entropy equality approximation in the lower excited singlet S1 and ground S0 states. It was found that the activation entropy of macrocycle protonation ΔS in the lowest excited singlet S1 state decreases by 49 J mol−1 К−1, and the activation enthalpy ΔН decreases by 14.4 kJ mol−1 correspondingly. This indicates an enthalpy-entropy ΔН -ΔS compensation upon protonation of the macrocycle core of the studied porphyrin. Based on the results obtained, it was proposed that the transition state for protonation in the excited S1 state is characterized by a lower height of the activation barrier and conformational mobility of the macrocycle.

References

  1. Presselt M., Dehaen W., Maes W., Klamt A., Martinez T. J., Beenken W. J. D., Kruk M. M. Quantum chemical insights into the dependence of porphyrin basicity on the meso-aryl substituents: thermodynamics, buckling, reaction sites and molecular flexibility. Phys. Chem. Chem. Phys., 2015, vol. 17, no. 21, pp. 14096–14106. DOI: https://doi.org/10.1039/C5CP01808K.
  2. Röder B., Büchner M., Rückmann I., Senge M. O. Correlation of photophysical parameters with macrocycle distortion in porphyrins with graded degree of saddle distortion. Photochem. Photobiol. Sci., 2010, vol. 9, pp. 1152–1158. DOI: doi.org/10.1039/C0PP00107D.
  3. Kruk M. M., Braslavsky S. E. Acid-base equilibria in 5,10,15,20-tetrakis-(4-sulfonatophenyl)- chlorin: Role of Conformational Flexibility. J. Phys. Chem. A., 2006, vol. 110, no. 10, pp. 3414–3425. DOI: doi.org/10.1021/jp056896h.
  4. Kruk M. M. Stroyeniye i opticheskiye svoystva tetrapirrol’nykh soyedineniy [Structure and optical properties of tetrapyrroliс compounds]. Minsk, BGTU Publ., 2019. 216 p. (In Russian).
  5. Vladimorov Yu. A., Potapenko A. Ya. Fiziko-khimicheskiye osnovy fotobiologicheskikh processov [Physical and chemical basis of photobiological processes]. Мoscow, Vyschaya shkola Publ., 1989. 199 p. (In Russian).
  6. Braslavsky Silvia E. Glossary of terms used in photochemistry, 3rd edition (IUPAC recommendations 2006). Pure and Applied Chemistry, 2007, vol. 79, no. 3, pp. 293–465. DOI: dx.doi.org/10.1351/pac200779030293.
  7. Grabowski Z., Grabowska A. The Foerster cycle reconsidered. Zeitschrift fuer Physicaslische Chemie Neue Folge, 1976, vol. 101, pp. 197–208. DOI: doi.org/10/524/zpch/1976/101/1-6.197.
  8. Grabowski Z., Rubaszewska W. Generalised Foerster cycle. Thermodynamic and extrathermodynamic relationships between proton transfer, electron transfer and electronic excitation. J. Chem. Soc., Farad. Trans. 1: Phys. chem. in cond. Phases, 1977, vol. 73, pp. 11–28. DOI: doi.org/10.1039/F19777300011.
  9. Sokhibova A. M., Kruk M. M. Analysis of acid-base equilibria in the lowest excited singlet S1 sate of porphyrins using Förster cycle. Trudy BGTU [Proceedings of BSTU], no. 3, Physics and Mathematics. Informatics, 2021, no. 1, pp. 25–30 (In Russian).
  10. Andrianov V. G., Malkova O. V., Berezin D. B. Acid-base properties of porphyrins. Uspekhi khimii porfirinov [Advances in Porphyrin Chemistry], 2001, vol. 3, pp. 107–129 (In Russian).
  11. Pukhovskaya S.G., Ivanova Yu. B., Kruk M. M., Golubchikov O. A., Koifman O. I. Electronic and steric effects of substituents as a tool to control the properties of tetrapyrrolic macrocycles. Funktsional’nyye materialy na osnove tetrapirrol’nykh makrogeterotsiklicheskikh soyedineniy [Functional materials based on tetrapyrrole macroheterocyclic compounds], Moscow, LENAND Publ., 2019, pp. 63–101 (In Russian).
  12. Kruk M. M., Starukhin A. S., Maes W. Influence of macrocycle protonation on the photophysical properties of porphyrins. Macroheterocycles, 2011, vol. 4, no. 2, pp. 69–79.
  13. Klenitsky D. V., Krylov A. B. Molecular structure and acid-base properties of N-methylsubstituted octaethylporphyrin. Trudy BGTU [Proceedings of BSTU], 2015, no. 6, Physics and Mathematics. Informatics, pp. 68–72 (In Russian).
  14. Kruk M. M., Starukhin A. S., Mamardashvili N. Zh., Sheinin V. B., Ivanova Yu. B. Determination of halides with luminescence of doubly protonated form of porphyrin. Zhurnal prikladnoy spectroskopii [J. Appl. Spectr.], 2007, vol. 74, no. 6, pp. 750–755 (In Russian).
  15. Ivanova Yu. B., Pukhovskaya S. G., Mamardashvili N. Zh., Koifman O. I., Kruk M. M. Rateacidity hysteresis and enthalpy-entropy compensation upon metalloporphyrin formation: implication for the metal ion coordination mechanism. J. Molec. Liquids., 2019, vol. 275, no. 3, pp. 491–498. DOI: doi.org/10.1016/j.molliq.2018.11.107.
  16. Kruk M. M., Pukhovskaya S. G., Ivanova Yu. B., Koifman O. I. Enthalpy-entropy compensation upon metal ion coordination with porphyrins: generalization for the free bases and doubly deprotonated macrocycles. Russian Chemical Bulletin, Intern. Edition., 2020, vol. 69, no. 6, pp. 1072–1075. DOI: https://doi.org/10.1007/s11172-020-2868-6.
15.06.2022