DETERMINATION OF PARAMETERS OF A MOBILE CABLE SKIDDING UNIT FOR WATERLOGGED FOREST AREAS

UDC 630*377.21

Shoshyn Artsiom Alegavich – Senior Lecturer, the Department of Mechanics and Engineering. Belarusian State Technological University (13a Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: raul777gol@mail.ru, shoshyn@belstu.by

Štollmann Vladimir – PhD (Engineering), Assistant Professor, the Department of Forest Harvesting, Logistics and Soil/Land Ameliorations. Technical University in Zvolen (24 Мasaryka str., 96001, Zvolen, Slovak Republic). E-mail: stollmannv@tuzvo.sk

Yarmolik Sergey Vasil’evich – Senior Lecturer, the Department of Material and Construction Mechanics. Belarusian State Technological University (13a Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: yarmolik@belstu.by.

DOI: https://doi.org/ 10.52065/2519-402Х-2025-288-9.

Key words: algorithm, power, drums, tower, skidding unit.

For citation: Shoshyn A. O., Štollmann V., Yarmolik S. V. Determination of parameters of a mobile cable skidding unit for waterlogged forest areas. Proceedings of BSTU, issue 1, Forestry. Nature Management. Processing of Renewable Resources, 2025, no. 1 (288), pp. 83–96 (In Russian). DOI: 10.52065/2519-402Х-2025-288-9.

Abstract

An algorithm for determining the parameters of a mobile cable skidding unit has been proposed and tested. It allows for design and includes the following points: mast height, power and geometric dimensions of the working drums (carrying, traction). The stage-by-stage nature of the calculation according to the algorithm has been substantiated. Groups of mobile cable skidding units and the drag coefficient have been determined depending on operating conditions: log volume, average skidding distance, terrain slope, drag coefficient, and annual production volume. A diagram has been obtained for determining the power on the traction and carrying drums, allowing for the selection of a base machine depending on the timber skidding method, drag coefficient, skidding/skidding speed, mast height, maximum span, and bundle volume. A diagram has been obtained for the dependence of the carrying rope drum diameter on the bundle volume, safety factor, and flexible organ manufacturer. A diagram for determining the diameter of a traction rope drum depending on the volume of a bundle, the coefficient of resistance to movement, the safety factor, and the manufacturer of the flexible organ is constructed. For a box-shaped mast section, the dependences of the section width on the mast height, the coefficient of resistance to movement, and the volume of a bundle of timber are established. Ranges of rational sizes of mast sections are identified.

Download

References

  1. Cable yarders TST. Available at: http://tst-forestry.com/seilkraeneindex (accessed 09.03.2024) (In Russian).
  2. Cable yarders Koller. Available at: https://kollergmbh.com/en/yarder (accessed 09.03.2024) (In Russian).
  3. Cable yarders Madill. Available at: https://www.madillequipment.com/172-tower-yarder.php (accessed 09.03.2024) (In Russian).
  4. Cable yarders Grizzly. Available at: http://www.forst-service.com/Grizzly%20400-Yarder.htm (accessed 09.03.2024) (In Russian).
  5. Cable yarders Konrad. Available at: https://www.forsttechnik.at/products/tower-yarders/kms/km40-2 (accessed 09.03.2024) (In Russian).
  6. Cable yarders SLP Krtiny. Available at: http://www.slpkrtiny.cz/ru/eieel-lner-al-nleuiinnu/elni-l-errci/ elni-l-erric/larix-3t/ (accessed 09.03.2024) (In Russian).
  7. STB 1360–2002. Sustainable forest management and forest use. Final fellings. Technology requirements. Minsk, Gosstandart Publ., 2002. 22 p. (In Russian).
  8. STB 1342–2002. Sustainable forest management and forest use. Forest cutting machines. General technical requirements. Minsk, Gosstandart Publ., 2003. 18 p. (In Russian).
  9. OST 13-81–80. Cable yarding systems. Types and main parameters. Moscow, Izdatel’stvo standartov Publ., 1981. 7 p. (In Russian).
  10. STB EN 14861–2007. Forest machinery. Selfpropelled machinery. Safety requirements. Minsk, Gosstandart Publ., 2007. 22 p. (In Russian).
  11. GOST 34280–2017. Machinery for forestry. Winches. Dimensions, performance and safety. Moscow, Mezhgosudarstvennyy sovet po standartizatsii, metrologii i sertifikatsii Publ., 2017. 15 p. (In Russian).
  12. Barylyak V. V. Obgruntuvannya parametriv privodiv lisotransportnykh kanatnykh ustanovok. Dissertatsiya kandidata technichnykh nauk [Justification of the drive parameters of cable yarding systems. Dissertation PhD (Engineering)]. Lviv, 2015. 222 p. (In Ukranian).
  13. Martynciv M. P. Issledovaniye nagruzok na khodovyye kolesa gruzovykh karetok i ikh vliyaniye na rabotu nesushchego kanata. Dissertatsiya kandidata technicheskikh nauk [Study of loads on the running wheels of carriages and their impact on the operation of the skyline. Dissertation PhD (Engineering)]. Lviv, 1980. 274 p. (In Russian).
  14. Udovitskiy O. M. Obgruntuvannya osnovniykh parametriv ta rozrobka pryvoda mobil’noi kanatnoi lisotransportnoi ustanovki. Dissertatsiya kandidata tekhnichnykh nauk [Substantiation of the main parameters and development of the drive of the cable yarding system. Dissertation PhD (Engineering)]. Lviv, 1999. 236 p. (In Ukranian).
  15. Štollmann V., Ilčík Š., Nikitin J. R. Rekuperačné lanové zariadenia. Zvolen, Technická univerzita vo Zvolene Publ., 2017. 171 p. (In Slovak).
  16. Horek P. Lesní lanovky. Praha, Lesnická práce Publ., 2007. 104 p. (In Czech).
  17. Belaya N. M., Prokhorenko A. G. Kanatnyye lesotransportnyye ustanovki [Cable yarding systems]. Moscow, Lesnaya promyshlennost’ Publ., 1967. 299 p. (In Russian).
  18. Dukelskiy A. I. Podvesnyye kanatnyye dorogi i kabelnyye krany. Moscow, Mashinocnroyeniye Publ., 1966. 484 p.
  19. Schlaghamerský A., Roško P. Lesní vývozní lanovky. Praha, Státní zemědělské nakladatelství Publ., 1964. 262 p. [In Czech].
  20. Lulay M., Wimer J. Yarding and loading. Handbook. Oregon, Osha Publ., 2010. 164 p.
  21. Shoshyn A. O. Experimental researhes of the cable yarder in flat cutting areas. Trudy BGTU [Proceedings of BSTU], issue 1, Forestry. Nature Мanagement. Processing of Renewable Resources, 2023, no. 1 (264), pp. 121–132. DOI: 10.52065/2519-402X-2023-264-13 (In Russian).
  22. Khodosovsky M. V. Issledovaniye prokhodimosti khlystov pri polupodvesnoy trelevke lebedkami. Dissertatsiya kandidata tekhnicheskikh nauk [Research stems patency at high lead yarding winches. Dissertation PhD (Engineering)]. Minsk, 1968. 276 p. (In Russian).
  23. Alyshev I. F. Issledovaniye soprotivleniya dvizheniyu pri trelevke lebedkami TL-3 polupodvesnym sposobom. Avtoreferat dissertatsii kandidata tekhnicheskikh nauk [Resistance movement study yarding winch TL-3 semi-overhead way. Abstract of thesis PhD (Engineering)]. St. Petersburg, 1953. 15 p. (In Russian).
  24. Korotyaev L. V. Issledovaniye soprotivleniya dvizheniyu pri trelevke lesa. Avtoreferat dissertatsii kandidata tekhnicheskikh nauk [Study of the resistance movement at the timber yarding. Abstract of thesis PhD (Engineering)]. Sverdlovsk, 1970. 32 p. (In Russian).
  25. Shoshyn A. O., Protas P. A., Mokhov S. P., Grechko V. V. Study of the cable crane tree-skidding process on swampy logging sites in the winter season. Lesozagotovitel’noye proizvodstvo: problemy i resheniya: materialy 1-y Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Logging industry: problems and solutions: materials of first International scientific-technical conference]. Minsk, 2017, pp. 72–76 (In Russian).
  26. Spinelli R., Maganotti N., Visser R. Productivity Models for Cable Yarding in Alpine Forests. Eur. J. Forest Eng., 2015, no. 1 (1), pp. 9–14.
  27. Senturk N., Ozturk T., Demir M. Productivity and costs in the course of timber transportation with the Koller K300 cable system in Turkey. Building and Environment, 2007, no. 42, pp. 2107–2113.
  28. Kusakin N. F., Minakov I. F., Nosikov A. A. Stal’nyye kanaty na lesozagotovkakh [Steel ropes in logging]. Moscow, Lesnaya promyshlennost’ Publ., 1982. 136 p. (In Russian).
  29. Python wire ropes. Product catalog high performance ropes edition 2019/2020.
  30. Teufelberger wire ropes. Available at: https://www.teufelberger.com/en/ perfection-f30-woodrunner. html (accessed 09.03.2024).
  31. Vornbaumen wire ropes. Available at: https://www.vornbaeumen.de/en/products/special-ropes/forestry- ropes.html (accessed 09.03.2024).
  32. Drumet wire ropes. Available at: https://www.drumet.pl/applications/druforest-forestry-logging (accessed

09.03.2024).

  1. GOST 7665–80. Double lay rope type LK-3, design 6×25. Moscow, Gosudarstvennyy komitet SSSR po standartam Publ., 1982. 8 p. (In Russian).
  2. GOST 7667–80. Double lay rope type LK-3, design 6×25. Moscow, Gosudarstvennyy komitet SSSR po standartam Publ., 1982. 8 p. (In Russian).
  3. AmSteel wire ropes. Available at: https://www.samsonrope.com/crane (accessed 09.03.2024).
  4. GOST 2668–80. Double lay rope type LK-R, design 6×19. Moscow, Gosudarstvennyy komitet SSSR po standartam Publ., 1982. 12 p. (In Russian).
  5. GOST 3077–80. Double lay rope type LK-O, design 6×19. Moscow, Gosudarstvennyy komitet SSSR po standartam Publ., 1982. 8 p. (In Russian).
  6. GOST 7668–80. Double lay rope type LK-RO, design 6×36(1+7+7/7+14)+1. Moscow, Gosudarstvennyy komitet SSSR po standartam Publ., 1982. 12 p. (In Russian).
  7. GOST 32931–2015. Profile steel pipes for metal structures. Moscow, Mezhgosudarstvenyy sovet po standartizatsii, metrologii i sertifikatsii Publ., 2015. 81 p. (In Russian).
  8. Shoshyn A. O., Dorozhko A. V., Štollmann V., Yarmolik S. V. Method for determining the parameters of the tower section of a cable yarding based on a tractor. Trudy BGTU [Proceedings of BSTU], issue 1, Forestry. Nature Management. Processing of Renewable Resources, 2022, no. 1 (252), pp. 155–164 (In Russian).
  9. Permissible stresses. Available at: https://alexfl.pro/inform/inform_stali4.html (accessed 09.03.2024) (In Russian).

11.11.2024