INCREASING THE EFFICIENCY OF WATER TREATMENT CONTROL SYSTEMS

UDC 621.3.011.712

 

Hryniuk Dzmitry Anatol’yevich – PhD (Engineering), Associate Professor, Assistant Professor, the Department of Automation of Production Processes and Electrical Engineering. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: hryniukda@gmail.com

Oliferovich Nadezhda Mikhaylovna – Senior Lecturer, the Department of Automation Production Processes and Electrical Engineering. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: oliferovich@belstu.by

Suhorukova Irina Gennad’yevna – Senior Lecturer, the Department of Software Engineering. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: irina_x@rambler.ru

Orobei Igor Olegovich – PhD (Engineering), Associate Professor, Assistant Professor, the Department of Automation Production Processes and Electrical Engineering. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: orobei@tut.by

 

DOI: https://doi.org/ 10.52065/2520-6141-2024-284-10.

Key words: control systems, water treatment, optimal dosing.

For citation: Oliferovich N. M., Hryniuk D. A., Suhorukova I. G., Orobei I. O. Increasing the efficiency of water treatment control systems. Proceedings of BSTU, issue 3, Physics and Mathematics. Informatics, 2024, no. 2 (284), pp. 70–79 (In Russian). DOI: 10.52065/2520-6141-2024-284-10.

Abstract

The article analyzes modern information technologies in water treatment systems. The features of the use of modern information processing technologies, which are widely used in these processes, are indicated. The greatest attention is paid to the use of artificial intelligence systems, especially those based on neural systems. The use of this approach is due not only to the lack of solutions to water treatment problems, but also to the emergence of new problems: taking into account economic objectives in design and operation, reducing emissions into the atmosphere, etc. The development of computer modeling technologies has made it possible to solve current problems of design, construction and operation at a new level. This direction in water treatment systems is characterized by the use of a wide range of ready-made software products. Building Information Model technologies are also widely used in the design and operation of wastewater treatment facilities. They make it possible to ensure quality and reduce the impact of the work of unqualified personnel; save resources; reduce commissioning time; test stressful situations; coordinate the work of services. Special attention is paid to the narrow area of application of information technologies to obtain models and build control systems for the optimal dosage of reagents. Solving this problem is impossible without information support for control systems. Dosing optimization systems focus on the use of test coagulation, filtration time, capillary suction time, control of viscosity, electrokinetic properties, and conductivity. Model-based control structures for the dosing system, as well as a tracking system, are proposed.

Download

References

  1. Fayyad U. M., Piatetsky-Shapiro G., Smyth P., Uthurusamy R. Advances in Knowledge Discovery and Data Mining, American. Cambridge, MA, USA, AAAI Press Publ., 1996. 611 p.
  2. Thuraisingham B. Data Mining: Technologies, Techniques, Tools, and Trends. Boca Raton, FL, CRC Press Publ., 1998. 288 p.
  3. Chau K. W. A review on integration of artificial intelligence into water quality modeling. Marine Pollution Bulletin, 2006, vol. 52, pp. 726–733.
  4. Koroteev D., Tekic Z. Artificial intelligence in oil and gas upstream: Trends, challenges, and scenarios for the future. Energy AI, 2021, vol. 3, pp. 100041. DOI: 10.1016/j.egyai.2020.100041.
  5. Lee D. S., Park J. M. Neural network modeling for on-line estimation of nutrient dynamics in a sequentially-operated batch reactor. Journal of Biotechnology, 1999, vol. 75, pp. 229–239.
  6. Panepinto D., Fiore S., Zappone M., Genon G., Meucci, L. Evaluation of the energy efficiency of a large wastewater treatment plant in Italy. Applied Energy, 2016, vol. 161, pp. 404–411.
  7. Cano R., Pérez-Elvira S. I., Fdz-Polanco F. Energy feasibility study of sludge pretreatments. A review. Applied Energy, 2015, vol. 149, pp. 176–185. DOI: 10.1016/j.apenergy.2015.03.132.
  8. Coma M., Rovira S., Canals J., Colprim, J. Minimization of sludge production by a side-stream reactor under anoxic conditions in a pilot plant. Bioresource Technology, 2013, vol. 129, pp. 229–235.
  9. Borzooei S., Campo G., Cerutti A., Meucci L., Panepinto D., Ravina M., Riggio V., Ruffino B., Scibilia G., Zanetti M. Optimization of the wastewater treatment plant: From energy saving to environmental impact itigation. The Science of the Total Environment, 2019, vol. 691, pp. 1182–1189.
  10. Quadros S., Rosa M. J., Alegre H., Silva C. A performance indicators system for urban wastewater treatment plants. Water Science and Technology, 2010, vol. 62, pp. 2398–2407. DOI: 10.2166/wst.2010.526.
  11. Fang F., Ni B. J., Yu H. Q. Estimating the kinetic parameters of activated sludge storage using weighted non-linear least-squares and accelerating genetic algorithm. Water Research, 2009, vol. 43, pp. 2595–2604. DOI: 10.1016/j. watres.2009.01.002.
  12. Wu Y., Liu S. Automating calibration, sensitivity and uncertainty analysis of complex models using the R package Flexible Modeling Environment (FME): SWAT as an example. Environmental Modelling and Software, 2012, vol. 31, pp. 99–109. DOI: 10.1016/j.envsoft.2011.11.013.
  13. Kim D., Bowen J. D., Ozelkan E. C. Optimization of wastewater treatment plant operation for greenhouse gas mitigation. J. of Environmental Management, 2015, vol. 163, pp. 39–48.
  14. Lal B., Nallakukkala S. Gas Hydrate in Water Treatment: Technological, Economic, and Industrial Aspects. NJ, USA, Hoboken, John Wiley & Sons Publ., 2022. 325 p.
  15. Göb S., Oliveros E., Bossmann S. H., Braun A. M., Nascimento C. A. O., Guardani R. Optimal experimental design and artificial neural networks applied to the photochemically enhanced Fenton reaction. Water Science and Technology, 2001, vol. 44, pp. 339–345.
  16. Lek S., Guiresse M., Giraudel J. L. Predicting stream nitrogen concentration from watershed features using neural networks. Water Research, 1999, vol. 33, pp. 3469–3478.
  17. Maier H. R., Morgan N., Chow C. W. K. Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters. Environmental Modelling and Software, 2004, vol. 19, pp. 485–494. DOI: 10.1016/ S1364-8152(03)00163-4.
  18. Alex J. Simulationsplattform zum integrierten Prozess- und Automatisierungsentwurf von Abwassersystemen. Automatisierungstechnik, 2015, vol. 63 (7), pp. 553–563.
  19. Drath R., Weber P., Mauser N. An evolutionary approach for the industrial introduction of virtual commissioning. IEEE Symposium on Emerging Technologies and Factory Automation Publ. Hamburg, Germany, 2008, pp. 5–8. DOI: 10.1109/ETFA.2008.4638359.
  20. Hoffmann P., Schumann R., Maksoud T. M. A., Premier G. C. Virtual commissioning of manufacturing systems a review and new approaches for simplification. 24th European Conference on Modelling and Simulation. Kuala Lumpur, 2010, pp. 175–181. DOI: 10.7148/2010-0175-0181.
  21. Worm G. I. M., Kelderman J. P., Lapikas, T., van der Helm A. W. C., van Schagen K. M., Rietveld L. C. The use of process simulation models in Virtual commissioning of process automation software in drinking water treatment plants. Water Science & Technology: Water Supply, 2013, vol. 13, p. 1331. 10.2166/ws.2013.131.
  22. Wolf G., Pfeffer, A. Integrierte virtuelle Inbetriebnahme. Atp Magazin, 2015, vol. 57 (01-02), pp. 68–79. DOI: 10.2166/ws.2013.131.
  23. Kim M., Nakhla G., Keleman M. Modeling the impact of food wastes on wastewater treatment plants. J. of Environmental Management, 2019, vol. 237, pp. 344–358.
  24. Wang K., Zhou C., Zhou H., Jiang M., Chen G., Wang C., Zhang Z., Zhao X., Jiang L.-M., Zhou Z. Comparison on biological nutrient removal and microbial community between full-scale an-aerobic/anoxic/ aerobic process and its upgrading processes. Bioresource Technology, 2023, vol. 374, pp. 128757. DOI: 10.1016/j.biortech.2023.128757.
  25. Petrini S., Foladori P., Beghini F., Armanini F., Segata N., Andreottola G. How inoculation affects the development and the performances of microalgal-bacterial consortia treating real municipal wastewater. J. of Environmental Management, 2020, vol. 263, pp. 110427. DOI: 10.1016/j.jenvman.2020.110427.
  26. Parra-Orobio B. A., Angulo-Mosquera L. S., Loaiza-Gualtero J. S., Torres-López W., Torres-Lozada P. Inoculum mixture optimization as strategy for to improve the anaerobic digestion of food waste for the methane production. J. of Environmental Chemical Engineering, 2018, vol. 6, pp. 1529–1535. DOI: 10.1016/j.jece.2018.01.048.
  27. Demirkaya E., Ciftcioglu B., Ozyildiz G., Zengin G. E., Pala-Ozkok I., Cokgor E., Tas D. O. Comprehensive evaluation of starter culture impact on the bioreactor performance and microbial kinetics. Biochemical Engineering J., 2021, vol. 177, pp. 108233.
  28. Tano-Debrah K., Fukuyama S., Otonari N., Taniguchi F., Ogura M. An inoculum for the aerobic treatment of wastewaters with high concentrations of fats and oils. Bioresource Technology, 1999, vol. 69 (2), pp. 133–139.
  29. Magdi S. M. Coordinated Control of Waste Water Treatment Process. Lecture Notes in Engineering and Computer Science, 2010, vol. 90, pp. 515–528. DOI: 10.1007/978-94-007-1192-1_41.
  30. Ani V. A. Process Modelling and Simulation of a Simple Water Treatment Plant. International Journal of Intelligent Systems and Applications in Engineering, 2016, vol. 4 (4), pp. 84–94.
  31. Dentel S. K., Abu-Orf M. M., Walker C. A., Optimization of slurry flocculation and dewatering based on electrokinetic and rheological phenomena. Chem. Eng. J., 2000, vol. 80, pp. 65–72.
  32. Zhao Y. Q. Correlation between floc physical properties and optimum polymer dosage in alum sludge conditioning and dewatering. Chem. Eng. J., 2003, vol. 92, pp. 227–235.
  33. Zhao Y. Q., Papavasilopoulos E. N., Bache D. H. Clogging of filter medium by excess polymer during alum sludge filtration. Filtration & Separation, 1998, vol. 35 (10), pp. 947–950.
  34. Wu C.C., Huang C., Lee D.J. Effects of polymer dosage on alum sludge dewatering characteristics and physical properties. Colloids Surf. A: Physicochem. Eng. Aspects, 1997, vol. 122, pp. 89–94. DOI: 10.1016/S0927-7757(97)00006-X.
  35. Oliferovich N., Hryniuk D. Orobei I. Measuring the speed of capillary soaking with adaptation regarding coordinates. Electrical, Electronic and Information Sciences (eStream): Open Conference. Vilnius, Lithuania, 2015, pp. 1–4.
  36. Bache D. H., Papavasilopoulos E. N. On the role of aluminium hydroxide the conditioning of an alum sludge. Water Sci. Technol., 1998, vol. 38 (2), pp. 33–40.
  37. Bache D. H., Papavasilopoulos E. N. Viscous behavior of sludge centrate in response to polymer conditioning. Water Res, 2000, vol. 34 (1), pp. 354–358.
  38. Byun S., Kwon J.-H., Kim M.-h., Park K.-y., Lee S. Automatic control of polymer dosage using streaming potential for waterworks sludge conditioning. Separation and Purification Technology, 2007, vol. 57 (2), pp. 230–236.
  39. Gao W., Song L., Wang Z., Xuan L. Pyrite activated peroxymonosulfate combined with as a physical- chemical conditioner modified biochar to improve sludge dewaterability: analysis of sludge floc structure and de-watering mechanism. Environmental Science and Pollution Research, 2022, vol. 29 (49), pp. 74725–74741. DOI: 10.1007/s11356-022-21074-4.
  40. Hryniuk D., Orobei I., Oliferovich N., Suhorukova I. Electrokinetic Converter using AN Unsteady Shift: A Quantitative Model. Electrical, Electronic and Information Sciences (eStream): Open Conference. Vilnius, 2019, pp. 1–4. DOI: 10.1109/eStream.2019.8732159.
  41. Bogoslav N. M., Suhorukova I. G., Hryniuk D. A., Orobei I. O., Orobei O. I. Converters of the electrokinetic potential of hydrodispersed systems. Izvestiya TulGU [Izvestiya TulGU], 2011, no. 3, pp. 106–110 (In Russian).
  42. Hernandez H. L., Lann M. V. Development of a neural sensor for on-line prediction of coagulant dosage in a potable water treatment plant in the way of its diagnosis. In Advances in Artificial Intelligence- IBERAMIA-SBIA 2006. Berlin; Heidelberg, Springer Publ., 2006, pp. 249–257.
  43. Teefy S., Farmerie J., Pyles E. Jar test. Operational Control of Coagulation and Filtration Processes, third ed. Denver, CO, American Water Works Association Publ., 2011, pp. 17–58.
  44. Sheng D. P. W., Bilad M. R., Shamsuddin N. Assessment and optimization of coagulation process in water treatment plant: A Review. ASEAN J. of Science and Engineering, 2023, vol. 3 (1), pp. 81–100.

25.04.2024