EFFECT OF METAL OXIDE NANOPARTICLES ON POLYMER MATERIAL PROPERTIES (REVIEW)

UDC 678.7-036

Lenartovich Liliya Alekseevna – PhD (Engineering), Associate Professor, Assistant Professor, the Department of Polymer Composite Materials. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: lenartovich@belstu.by

Prokopchuk Nikolay Romanovich – Corresponding Member of the National Academy of Sciences of Belarus, DSc (Chemistry), Professor, Professor, the Department of Polymer Composite Materials. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: nrprok@gmail.com

Kasperovich Volha Michailovna – PhD (Engineering), Associate Professor, Assistant Professor, the Department of Polymer Composite Materials. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: kasperovichvolha@yandex.by

Petrushenya Aleksandr Fedorovich – PhD (Engineering), Assistant Professor, the Department of Polymer Composite Materials. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: petraf@belstu.by

Liubimau Aleksandr Gennadievich – PhD (Engineering), Associate Professor, Assistant Professor, the Department of Polymer Composite Materials. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: lubimov@belstu.by

DOI: https://doi.org/ 10.52065/2520-2669-2024-283-9.

Key words: polymer, zinc oxide, titanium dioxide, nanoparticles, polyethylene terephthalate.

For citation: Lenartovich L. A., Prokopchuk N. R., Kasperovich O. M., Petrushenya A. F., Liubimau A. G. Effect of metal oxide nanoparticles on polymer material properties (review). Proceedings of BSTU, issue 2, Chemical Engineering, Biotechnologies, Geoecology, 2024, no. 2 (283), pp. 65–76 (In Russian). DOI: 10.52065/2520-2669-2024-283-9.

Abstract

The introduction of dispersed substances of organic or inorganic nature into the polymer matrix is carried out with the aim of changing the physicochemical, mechanical, thermal, electrical and tribological properties. Currently, there is increasing interest in compositions with bactericidal, fire-resistant, and heat-conducting properties. One of the promising directions is the development of multifunctional compositions that simultaneously provide an increase in several important performance characteristics while maintaining physical and mechanical properties. The use of metal compounds in polymer matrices can lead to a significant increase in the described characteristics. The purpose of this work is to analyze the influence of metal nanooxides on various properties of polymer materials. Metal oxide nanoparticles have large surface charges that bind the surface to polymers through electrostatic interactions. They can also form metal-oxygen single bonds with alcohol functional groups in the polymer, metal-nitrogen single coordination bonds with nitrogenbased functional groups, or hydrogen bonds, thereby influencing the entire range of properties of the polymer. Due to their size, nanoparticles can act as nuclei for crystal formation, thus influencing the number of crystals formed and their size. And the crystalline structure of polymers is directly related to strength, i.e. ability to resist destruction under load. The use of nanoadditives makes it possible to impart antibacterial properties, increase the resistance to combustion and impart photocatalytic activity.

Download

References

  1. Eliseev A. A., Lukashin A. V. Funktsional’nyye nanomaterialy [Functional nanomaterials]. Moscow, FIZMATLIT Publ., 2010. 456 p. (In Russian).
  2. Mikhaylov M. D. Sovremennyye problemy materialovedeniya. Nanokompozitnye materialy [Modern problems of materials science. Nanocomposite materials]. St. Petersburg, Izdatel’stvo Politekhnicheskogo universiteta Publ., 2010. 208 p. (In Russian).
  3. Lipin V. A. Nanotekhnologii v khimicheskoy tekhnologii proizvodstva polimerov [Nanotechnologies in chemical technology for polymer production]. St. Petersburg, VShTE SPbGUPTD Publ., 2020. 72 p. (In Russian).
  4. Polimernyye nanokompozity [Polymer nanocomposites]. Ed. by May Yu-Ving, Yu Zhong-Zhen. Moscow, Tekhnosfera Publ., 2011. 687 p (In Russian).
  5. Burunkova Yu. E., Denisyuk I. Yu., Sheklanova E. B., Fokina M. I. Opticheskiye polimernyye nanokompozity [Optical polymer nanocomposites]. St. Petersburg, Universitet ITMO Publ., 2017. 80 p. (In Russian).
  6. Funktsional’nyye napolniteli dlya plastmass [Functional fillers for plastics]. Ed. by M. Ksantos. St. Petersburg, Nauchnyye osnovy i tekhnologii Publ., 2010. 462 p. (In Russian).
  7. Perepelkin K. E. Armiruyushchiye volokna i voloknistyye polimernyye kompozity [Reinforcing fibers and fibrous polymer composites]. St. Petersburg, Nauchnyye osnovy i tekhnologii Publ., 2009. 380 p. (In Russian).
  8. Foster L. Nanotekhnologii, nauka, innovatsii i vozmozhnosti [Nanotechnology, science, innovation and opportunity]. Moscow, Tekhnosfera Publ., 2008. 352 p. (In Russian).
  9. Kobayasi N. Vvedenyie v nanotekhnologiyu [Introduction to nanotechnology]. Moscow, Binom. Laboratoriya znaniy Publ., 2007. 134 p. (In Russian).
  10. Sergeev G. B. Nanokhimiya [Nanochemistry]. Moscow, MGU Publ., 2007. 148 p. (In Russian).
  11. Danilov A. Nanoparticle dualism. Rossiyskiye nanotekhnologii [Russian nanotechnology], 2009, vol. 41, no. 5, pp. 20–21 (In Russian).
  12. Shulenburg M. Nanotekhnologii – novinki zavtrashnego dnya [Nanotechnology – the new products of tomorrow]. Luxembourg, Publications Service of the European Community Publ., 2006. 56 p. (In Russian).
  13. Pinchuk L. S., Gol’dade V. A. Kreyzing v tekhnologii poliefirnykh volokon [Crazing in polyester fiber technology]. Minsk, Belaruskaya navuka Publ., 2014. 177 p. (In Russian).
  14. Reva O. V., Nazarovich A. N., Bogdanova V. V. Fixing non-toxic fire retardants on the surface of polyester fibers. Vestnik Universiteta grazhdanskoy zashchity MChS Belarusi [Bulletin of the University of Civil Protection of the Ministry of Emergency Situations of Belarus], 2019, vol. 3, no. 2, pp. 107–116 (In Russian).
  15. Jiyeon O., Sam Soo K., Jaewoong L., Chankyu K. Supercritical fluid flame-retardant processing of polyethylene terephthalate (PET) fiber treated with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO): Changes in physical properties and flame-retardant performance. Journal of CO2 Utilization, 2021, vol. 54, 14 p. DOI: 10.1016/j.jcou.2021.101761.
  16. Zhang A., Rui W., Yuping W., Zhenfeng D., Jing Zh., Jianfei W. Construction of catalyst-free, smoke suppression flame retardant PET fiber via bifunctional metal-organic framework. Polymer Degradation and Stability, 2023, vol. 216, 10 p. DOI: 10.1016/j.polymdegradstab.2023.110457.
  17. Fang D., Shumin Zh., Xiaoyan Ch., Rong L., Xuehong R. PET fabric treated with environmentalfriendly phosphorus-based compounds for enhanced flame retardancy, thermal stability and anti-dripping performance. Composites Part B: Engineering, 2022, vol. 235, 12 p. DOI: 10.1016/j.compositesb.2022.109791.
  18. Chenxi Zh., Chao Zh., Jiewen H., Zhiming J., Ping Zh. Flame-retardant and anti-dripping coating for PET fabric with hydroxyl-containing cyclic phosphoramide. Polymer Degradation and Stability, 2021, vol. 192, 18 p. DOI: 10.1016/j.polymdegradstab.2021.109699.
  19. Prokopchuk N. R., Lyubimov A. G., Vishnevskaya T. A., Mozheyko Yu. M., Krauklis A. V. Strengthening PET threads with multi-walled carbon nanotubes. Polimernye materialy i tekhnologii [Polymer materials and technologies], 2020, vol. 6, no. 4, pp. 30–36 (In Russian). DOI: 10.32864/polymmattech-2020-6-4-30-36.
  20. Sertsova A. A., Yurtov E. V. Nanoparticles of metal compounds – flame retardants for polymer composite materials. Polucheniye i modifitsirovaniye sinteticheskikh volokon i nitey dlya innovatsionnykh materialov, kompozitov i izdeliy: tezisy dokladov Vserossiyskoy nauchno-prakticheskoy konferentsii [Production and modification of synthetic fibers and threads for innovative materials, composites and products: abstracts of the All-Russian scientific and practical conference]. Ivanovo, 2015, p. 21 (In Russian).
  21. Rashid M. M., Simoncic B., Tomsi B. Recent advances in TiO2-functionalized textile surfaces. Surface and Interfaces, 2021, vol. 22, pp. 1–71. DOI: 10.1016/j.surfin.2020.100890.
  22. Carosio F., Alongi J., Frache A. Influence of surface activation by plasma and nanoparticle adsorption on the morphology, thermal stability and combustion behavior of PET fabrics. European Polymer Journal, 2011, vol. 47, no. 5, pp. 893–902. DOI: 10.1016/j.eurpolymj.2011.01.009.
  23. Poonsub T., Chanikarn W., Wirawan I., Sunantha S., Chanin K. Effect of TiO2 and ZnO on thin film properties of PET/PBS blend for food packaging applications. Energy Procedia, 2014, vol. 56, pp. 102–111. DOI: 10.1016/j.egypro.2014.07.137.
  24. Bouhriss A., Gmouth S. The recent advances in nanotechnologies for textile functionalization. Advances in Functional and Protective Textiles, 2020, pp. 531–568. DOI: 10.1016/B978-0-12-820257-9.00020-5.
  25. Manumur R. M., Simoncic B., Tomcsic B. Recent advances in TiO2-functionalized textile surfaces. Surfaces and Interfaces, 2021, vol. 22, pp. 1–71. DOI: 10.1016/j.surfin.2020.100890.
  26. Prokopchuk N. R., Lenartovich L. A., Vishnevskaya T. A., Mozheyko Yu. M. Retardation of combustion and strengthening of PET with titanium dioxide particles. Polimernye materialy i tekhnologii [Polymer materials and technologies], 2022, vol. 8, no. 4, pp. 63–68 (In Russian).
  27. Ribeiro N. L., Fronseca A., Da Silva E., Oliveira E., Ribeiro A., Maranhao L., Pacheco J., Almeida L. Residue-based TiO2/PET photocatalytic films for the degradation of textile dyes: a step in the development of green monolith reactors. Author links open overlay panel. Chemical Engineering and Processing – Process Intensification, 2020, vol. 147, pp. 1–33. DOI: 10.1016/j.cep.2019.1077921.
  28. Marcelinoa R., Amorima C., Ratova M., Delfour-Peyrethon B., Kelly P. Novel and versatile TiO2 thin films on PET for photocatalytic removal of contaminants of emerging concern from water. Chemical Engineering Journal, 2019, vol. 370, pp. 1251–1261. DOI: 10.1016/j.cej.2019.03.284.
  29. Min K. S., Manivannan R., Son Y. Porphyrin Dye/TiO2 imbedded PET to improve visible-light photocatalytic activity and organosilicon attachment to enrich hydrophobicity to attain an efficient selfcleaning material. Dyes and Pigments, 2019, vol. 162, pp. 8–17. DOI: 10.1016/j.dyepig.2018.10.014.
  30. Radoicic M. B., Milosevic M. V., Milicevic D. S., Suljovruji E. H. Influence of TiO2 nanoparticles on formation mechanism of PANI/TiO2 nano-composite coating on PET fabric and its structural and electrical properties. Surface and Coatings Technology, 2015, vol. 278, pp. 38–47. DOI: 10.1016/j.surfcoat.2015.07.070.
  31. Zhoua F., Zhanga Y., Zhanga D., Zhangc Z., Fua F., Zhanga X., Yangb Y., Lina H., Chen Y. Fabrication of robust and self-healing superhydrophobic PET fabrics based on profiled fiber structure. Colloids and Surfaces, 2021, vol. 609, 12 p. DOI: https://doi.org/10.1016/j.colsurfa.2020.125686.
  32. Radetic M. Functionalization of textile materials with TiO2 nanoparticles. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, vol. 16, pp. 62–76. DOI: 10.1016/j.jphotochemrev.2013.04.002.
  33. Bhargav M., Suresh B. V. Experimental investigation of fiber orientation effect on mechanical and erosive wear performance of TiO2 filled woven jute fiber based epoxy composites. Materials Today: Proceedings, 2021, part 1, vol. 44, pp. 2617–2622. DOI: 10.1016/j.matpr.2020.12.660.
  34. Yamada T., Hao L., Tada K., Konagaya Sh., Li G. Crystallization characteristics of PET/TiO2 nanocomposites. Materials Science: an Indian Journal, 2006, vol. 2, no. 6, pp. 154–160.
  35. Agrawala H., Awasthi K., Saraswata V. Crystallization activation energy of polyethylene terephthalate & its ZnO/TiO2 nanocomposites. Research and Reviews: Journal of Pure and Applied Physics, 2014, vol. 2, no. 1, pp. 17–21.
  36. Shalom Y., Perelshtein I., Perkas N., Gedanken A., Banin E. Catheters coated with Zn-doped CuO nanoparticles delay the onset of catheter-associated urinary tract infections. Nano Research, 2016, vol. 10, pp. 520–533. DOI: 10.1007/s12274-016-1310-8.
  37. Çaykara T., Sande M. G., Azoia N., Rodrigues L. R., Silva C. J. Exploring the potential of polyethylene terephthalate in the design of antibacterial surface. Medical Microbiology and Immunology, 2020, vol. 209, pp. 363–372. DOI: 10.1007/s00430-020-00660-8.
  38. Li Q., Zhang Sh., Mahmood K., Jin Yi, Huang Ch., Huang Z., Zhang S., Ming W. Fabrication of multifunctional PET fabrics with flame retardant, antibacterial and superhydrophobic properties. Progress in Organic Coatings, 2021, vol. 157, pp. 296–305. DOI: 10.1016/j.porgcoat.2021.106296.
  39. Meleshko A. A., Afinogenova A. G., Afinogenov G. E., Spiridonova A. A., Tolstoy V. P. Antibacterial inorganic agents: the effectiveness of using multi-component systems. Infektsiya i immunitet [Infection and immunity], 2020, vol. 10, no. 4, pp. 639–654 (In Russian).
  40. Abo-Zeid Y., Williams G. R. The potential anti-infective applications of metaloxide nanoparticles: a systematic review. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology, 2020, vol. 12, no. 3, pp. 1–36. DOI: 10.1002/wnan.1592.
  41. Alavi M., Rai M. Recent advances in antibacterial applications of metal nanoparticles (MNPs) and metal nanocomposites (MNCs) against multidrug resistant (MDR) bacteria. Expert Review of Anti-infective Therapy, 2019, vol. 17, no. 6, pp. 419–428. DOI: 10.1080/14787210.2019.1614914.
  42. Liu J., Wang Y., Peng Y., Wang A. A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO. Journal of Alloys and Compounds, 2019, vol. 783, pp. 898–918. DOI: 10.1016/j.jallcom.2018.12.330.
  43. Rauhunath A., Perumal E. Metal oxide nanoparticles as antimicrobial agents: a promise for the future. International Journal of Antimicrobial Agents, 2017, vol. 49, no. 2, pp. 137–152. DOI: 10.1016/j.ijantimicag.2016.11.011.
  44. Sanchez-Lopez E., Gomes D., Esteruelas G., Bonilla L., Lopez-Machado A. L., Galindo R., Cano A., Espina M., Ettcheto M. Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials, 2020, vol. 10, no. 2, pp. 292–331. DOI: 10.3390/nano10020292.
  45. Kalmurzaeva A. Sh., Dzhumanazarova A. Z., Sarieva Zh. K. Antimicrobial properties of silver nanoparticles obtained from plant extracts against pathogenic and opportunistic microorganisms. Mezhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovaniy [International journal of applied and fundamental research], 2022, no. 6, pp. 81–86 (In Russian).
  46. Lin L., Wenzhong G., Wang X., Li X., Wang S. Preparation and characterizations of antibacterial PET-based hollow fibers containing silver particles. Materials Letters, 2011, vol. 65, pp. 1375–1377. DOI: 10.1016/j.matlet.2011.02.006.
  47. Waters J. E., Stevens-Cullinane L., Siebenmann L., Hess J. Recent advances in the development of metal complexes as antibacterial agents with metal-specific modes of action. Current Opinion in Microbiology, 2023, vol. 75, pp. 1–11. DOI: 10.1016/j.mib.2023.102347.
  48. Fesseha Y. A., Manayia A. H., Liu P., Su T., Huang S. Photoreactive silver-containing supramolecular polymers that form self-assembled nanogels for efficient antibacterial treatment. Journal of Colloid and Interface Science, 2024, part B, vol. 654, pp. 967–978. DOI: 10.1016/j.jcis.2023.10.119.
  49. Zhang Sh., Li R., Huang D., Ren X., Huang T. Antibacterial modification of PET with quaternary ammonium salt and silver particles via electron-beam irradiation. Materials Science and Engineering, 2017, vol. 85, pp. 123–129. DOI: 10.1016/j.msec.2017.12.010.
  50. Zharikov V. M., Sharapov D. G. The method for making a medical mask. Patent RU 2426484 RF, 2011 (In Russian).
  51. Frolova Yu. V., Kirsh I. A., Beznaeva O. V., Pomogova D. A., Tikhomirov A. A. Creation of packaging polymer materials with antimicrobial properties. Izvestiya vuzov. Prikladnaya khimiya i biotekhnologiya [News from universities. Applied chemistry and biotechnology], 2017, vol. 7, no. 3, pp. 145–152 (In Russian).
  52. Shelyakov V. O., Ivanov M. N., Volynskiy A. L., Bakeev N. F., Yarysheva L. M., Arzhakova O. V., Dolgova A. A., Semenova E. V., Nikonorova N. I. The method for producing polymer products based on polyethylene terephthalate with antibacterial properties. Patent RU 2394948, 2010 (In Russian).
  53. Upasani P. S., Sreekumar T. V., Jain A. K. Polyester fabric with inherent antibacterial, hydrophilic and UV protection properties. The Journal of The Textile Institute, 2016, vol. 107, pp. 1135–1143. DOI: 10.1080/00405000.2015.1097082.
  54. Raghupathi K. R., Koodali R. T., Manna A. C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 2011, vol. 27, no. 7, pp. 4020–4028. DOI: 10.1021/la104825u.
  55. Manna J., Begum G., Kumar K., Misra S., Rana R. Enabling antibacterial coating via bioinspired mineralization of nanostructured ZnO on fabrics under mild conditions. ACS Appl. Mater. Interfaces, 2013, vol. 5, no.10, pp. 4457–4463. DOI: 10.1021/am400933n.

05.09.2024