STUDY OF HEAT TRANSFER IN TUBULAR-LATTING NOZZLES WITH A DEVELOPED SURFACE

UDC 665.6

 

Рахманова Мухаббат Исмаиловна – старший преподаватель кафедры пищевых технологий. Ургенчский государственный университет (220100, г. Ургенч, ул. Х. Алимджана, 14, Республика Узбекистан). E-mail: muxabbatraxmanova76@gmail.com

Францкевич Виталий Станиславович – кандидат технических наук, доцент, заведующий кафедрой машин и аппаратов химических и силикатных производств. Белорусский государственный технологический университет (220006, г. Минск, ул. Свердлова, 13а, Республика Беларусь). E-mail: fvs_maxp@belstu.by

Нурмухамедов Хабибулла Сагдуллаевич – профессор кафедры технологических машин и оборудования. Ташкентский химико-технологический институт (100011, г. Ташкент, ул. Навои, 32, Республика Узбекистан). E-mail: haasbek1952@gmail.com

Мавланов Элбек Тулкинович – кандидат технических наук, доцент кафедры технологических машин и оборудования. Ташкентский химико-технологический институт (100011, г. Ташкент, ул. Навои, 32, Республика Узбекистан). E-mail: elbek198181@gmail.com

Нишанова Садоқат Хабибуллаевна – старший преподаватель кафедры технологических машин и оборудования. Ташкентский химико-технологический институт (100011, г. Ташкент, ул. Навои, 32, Республика Узбекистан). E-mail: sadosha1811@gmail.com

Ланкин Роман Игоревич – ассистент кафедры машин и аппаратов химических и силикатных производств. Белорусский государственный технологический университет (220006, г. Минск, ул. Свердлова, 13а, Республика Беларусь). E-mail: roman147l@icloud.com

DOI: https://doi.org/ 10.52065/2520-2669-2024-283-5.

 

Key words: chemisorption, turbulator, heat exchange intensity, intensity, heat transfer, nozzle, spiralrolled tube, groove depth, placement step.

For citation: Rakhmanova M. I., Frantskevich V. S., Nurmukhamedov H. S., Mavlanov E. T., Nishanova S. H., Lankin R. I. Study of heat transfer in tubular-latting nozzles with a developed surface. Proceedings of BSTU, issue 2, Chemical Engineering, Biotechnologies, Geology, 2024, no. 2 (283), pp. 36–42 (In Russian). DOI: 10.52065/2520-2669-2024-283-5.

Abstract

This paper presents an experimental study of the dependence of the heat transfer intensity Nu on the dimensionless relative depth h / D of smoothly contoured spiral grooves during washing during the absorption of ammonia by ammoniated brine. Everyone knows that heat exchange processes play a significant role in many energy devices and technological processes. With intensification of heat exchange, the amount of heat increases, and accordingly, the overall dimensions of the heat exchanger decrease. The use of discretely located annular protrusions is one of the most effective and studied methods for intensifying heat transfer. It should be noted that rolling of ring channels does not increase the outer diameter of the pipes, allowing the use of these pipes in close bundles and does not change the existing technology for assembling heat exchangers. Smooth and spiral-rolled pipes made of X18N10T stainless steel with smoothly contoured grooves on the outside and similar protrusions on the inside were used as an experimental section. It has been experimentally proven that an in-crease in the values of the relative depth of the turbulator h / D heat transfer in-creases for all the studied placement steps of the turbulator t / D. Analysis of experimental data shows that in the transition mode Re, groove depths h / D from 0.003 to 0.095 and t / D = 0,77, the heat transfer intensity increases from 141.5 to 155.1. A comparison of experimental data shows an increase in heat transfer in the range of 1.088–1.130 times. From the data analysis it is clear that reducing the turbulator placement step t / D from 3.0 to 0.025 leads to an increase in the heat transfer intensity Nu from 123.3 to 176.9. Conclusions can be drawn to reduce the refrigeration zone and increase the absorption zone only by intensifying heat exchange.

Download

References

  1. Nurmukhamedov Kh. S., Temirov O. Sh., Turobzhonov S. M. va b. Gazlarni kajta ishlash tekhnologiyasi, zharayon va kurilmalari [Gas processing technology, processes and devices]. Tashkent, Sharq Publ., 2016. 856 p. (In Uzbek).
  2. Laptev A. G., Nikolaev N. A., Basharov M. M. Metody intensifikatsii i modelirovaniya teplomassoobmennykh processov [Methods of intensification and modeling of heat and mass transfer processes]. Moscow, Teplotekhnik Publ., 2011. 335 p. (In Russian).
  3. Moskichev Yu. A., Grigorichev A. K., Pavlov O. S. Teoreticheskiye osnovy khimicheskoy tekhnologii [Theoretical foundations of chemical technology]. Moscow, St. Petersburg, Lan Publ., 2016. 272 p. (In Russian).
  4. Kalinin E. K., Dreitzer G. A., Myakochin A. S., Kopp A. N. Effektivnyye teploobmennyye poverkhnosti [Effective heat transfer surfaces]. Moscow, Mashinostroeniye Publ., 1999. 423 p. (In Russian).
  5. Tarasevich S. E., Zlobin A. V., Yakovlev A. B. Hydrodynamics and heat transfer during the movement of a single-phase fluid in pipes with artificial roughness. TVT [High Temp.], 2015, vol. 53, no. 6, pp. 938–952 (In Russian).
  6. Leontiev A. I., Gortyshov Yu. F. Development of fundamental principles for creating prototypes of energy-efficient heat exchangers with surface intensification of heat transfer. Trudy chetvertoy Rossiyskoy natsional’noy konferentsii po teploobmenu [Proceedings of the fourth Russian national conference on heat transfer], 2006, vol. 6, pp. 253–257 (In Russian).
  7. Dzyubenko B. V. Intensifikatsiya teplo- i massoobmena na makro-, mikro- i nanomasshtabakh [Intensification of heat and mass transfer on macro-, micro- and nanoscales]. Moscow, TsNIIatominform Publ., 2008. 532 p. (In Russian).
  8. Popov I. A., Gortyshov Yu. F., Olimpiev V. V. Industrial application of heat transfer intensification – the current state of the problem (review). Teploenergetika [Thermal power engineering], 2012, no. 1, pp. 3–14 (In Russian).
  9. Bejan A., Kraus A. D. Heat transfer handbook. Hoboken, N. J., Jonh Wiley & Sons, Inc, 2003. 1427 p.
  10. Gortyshov Yu. F., Olimpiev V. V., Baygaliev B. E. Teplogidravlicheskiy raschet i proektirovaniye oborudovaniya s intensifitsirovannym teploobmenom [Thermohydraulic calculation and design of equipment with intensified heat transfer.]. Kazan, Kazan State Tech. Univ. Publ., 2004. 432 p. (In Russian).
  11. Rohsenow W. M., Hartnett J. P., Cho Y. I. Handbook of heat transfer. New York, Mc. Graw-Hill Professional, 1998. 1344 p.
  12. Tsvetkov F. F., Grigoriev B. A. Teplomassoobmen [Heat and mass transfer]. Moscow, MEI Publ., 2005. 550 p. (In Russian).
  13. Balchugov A. V., Kustov B. O. Development of a new air cooling device. Sbornik nauchnyh trudov Angarskogo gosudarstvennogo tekhnicheskogo universiteta [Collection of scientific works of Angarsk State Technical University], 2019, vol. 1, no. 16, pp. 55–58 (In Russian).
  14. Gorobets V. G. Heat transfer and optimal geometric surfaces with intensifiers in the form of semi-cylindrical protrusions (or depressions). Trudy chetvertoy Rossiyskoy national’noy konferentsii po teploobmenu [Proceedings of the fourth Russian national conference on heat transfer], 2019, vol. 6, pp. 187–191 (In Russian).
  15. Khikmatova N. G. Methods for increasing the efficiency of heat exchangers. International scientific and practical conference world science, 2017, vol. 1, no. 1, pp. 12–14 (In Russian).
  16. Makeev A. N., Shirov M. S. Heat exchangers with a moving heat exchange surface. Sovremennyye tendentsii razvitiyya nauki i tekhnologiy [Modern trends in the development of science and technology], 2017, no. 1, pp. 93–97 (In Russian).
  17. Brodov Yu. M., Ryabchikov A. Yu., Aronson K. E. Study of a number of methods for intensifying heat transfer in energy heat exchangers. Trudy tret’уey Rossiyskoy natsional’noy konferentsii po teploobmenu [Proceedings of the third Russian national conference on heat transfer], 2002, vol. 6, pp. 49–56 (In Russian).
  18. Migai V. K. Povysheniye effektivnosti sovremennykh teploobmennikov [Increasing the efficiency of modern heat exchangers]. Leningrad, Energy Publ., 1980. 144 p. (In Russian).
  19. Dzyubenko B. V., Popov A. A. Intensification of heat transfer and analysis of methods for comparing the thermohydraulic efficiency of heat transfer surfaces. Problemy gazodinamiki i teploobmena v energeticheskikh ustanovkakh: trudy XV shkoly-seminara molodykh uchenykh i spetsialistov pod rukovodstvom akademika RAN A. I. Leont’eva [Problems of gas dynamics and heat transfer in power plants: proceedings of the XV school-seminar of young scientists and specialists under the leadership of Academician of the Russian Academy of Sciences A. I. Leontiev], 2005, vol. 1, pp. 63–66 (In Russian).
  20. Nurmukhamedov Kh. S., Mavlanov E. T., Zakirov S. G., Karimov K. F., Temirov O. Sh. Carbonization column. Patent UZ 06102, 2019 (In Russian).

13.06.2024