METASTRUCTURES BASED ON POLYMER COMPOSITE MATERIALS AND THEIR PROPERTIES IN THE MICROWAVE RANGE (REVIEW)

UDC 678.8

 

Markovsky Aleksandr Sergeevich – Master’s degree student, the Department of Polymer Composite Materials. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: sasha.markovskii@mail.ru

Liubimau Aleksandr Gennad’yevich – PhD (Engineering), Associate Professor, Assistant Professor, the Department of Polymer Composite Materials. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: lubimov@belstu.by

Petrushenya Aleksandr Fedorovich – PhD (Engineering), Assistant Professor, the Department of Polymer Composite Materials. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: petraf@belstu.by

Kasperovich Olga Mikhaylovna – PhD (Engineering), Associate Professor, Assistant Professor, the Department of Polymer Composite Materials. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: kasperovichvolha@yandex.by

Lenartovich Liliya Alekseevna – PhD (Engineering), Senior Lecturer, the Department of Polymer Composite Materials. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: lenartovich@belstu.by

DOI: https://doi.org/ 10.52065/2520-2669-2024-283-15.

Key words: frequency selective surface, radar, radiation absorption, composites, metamaterials, Salisbury screen, frequency bandwidth.

For citation: Markovsky A. S., Liubimau A. G., Petrushenya A. F., Kasperovich O. M., Lenartovich L. A. Metastructures based on polymer composite materials and their properties in the microwave range (review). Proceedings of BSTU, issue 2, Chemical Engineering, Biotechnologies, Geoecology, 2024, no. 2 (283), pp. 122–135 (In Russian). DOI: 10.52065/2520-2669-2024-283-15.

Abstract

The article provides a review of the literature on the use of frequency selective surfaces in combination with the classic Salisbury screen, i. e. a thin layer of absorbing (conducting) material is located at a distance of λ/4 in front of the conducting surface, the incident energy of high-frequency radiation is reflected from the outer and inner frequency selective surfaces with the formation of an interference pattern of neutralization of the original wave and, as a result, the incident radiation is suppressed. Parameters such as the absorption range of incident electromagnetic waves, absorption depth and operating frequency are considered. The use of frequency selective surfaces is a highly effective way to reduce the visibility of flying objects and protection against electromagnetic radiation. The scope of use of such surfaces is large, since in the modern world the full spectrum of electromagnetic waves is used as a mean to exchange information, studying the surrounding world and also in applied form (the basis of the operating principle of microwave ovens and radars). Modern materials and production methods make it possible to obtain complex surfaces with specified properties. Frequency selective surfaces based on metamaterials can not only provide the necessary bandwidth, but also save material and improve mechanical properties. With the increase in the number of base transmitting stations, the reduction in the distance between them and residential buildings, and the spread of wireless networks, methods for shielding the surroundingspace, namely, workplaces and living quarters, are of particular interest to researchers. To guarantee the spread of light and at the same time reduce the penetration of electromagnetic waves of certain frequencies through window openings, it is also proposed to use frequency selective surfaces.

Download

References

  1. Yang Q., Liu L., Hui D., Chipara M. Microstructure, electrical conductivity and microwave absorption properties of γ-Feni Decorated Carbon Nanotube Composites. Composites, 2016, part B, Engineering, no. 87, pp. 256–262. DOI: 10.1016/j.compositesb.2015.09.056.
  2. Chen C.-Y., Pu N.-W., Liu Y.-M., Huang S.-Y., Wu C.-H., Ger M.-D., Gong Y.-J., Chou Y.-C. Remarkable microwave absorption performance of graphene at a very low loading ratio. Composites, 2017, part B, Engineering, no. 114, pp. 395–403. DOI: 10.1016/j.compositesb.2017.02.016.
  3. Eun S.-W., Choi W.-H., Jang H.-K., Shin J.-H., Kim J.-B., Kim C.-G. Effect of delamination on the electromagnetic wave absorbing performance of radar absorbing structures. Composites, 2015, Science and Technology, no. 116, pp. 18–25. DOI: 10.1016/j.compscitech.2015.04.001.
  4. Wei H., Zhang Z., Hussain G., Zhou L., Li Q., Ostrikov K. Techniques to enhance magnetic permeability in microwave absorbing materials. Applied Materials Today, 2020, no. 19, p. 100596. DOI: 10.1016/ j.apmt.2020.100596.
  5. Mehrabi S., Bilal R. M. H., Naveed M. A., Ali M. M. Ultra-broadband nanostructured metamaterial absorber based on stacked square-layers of TiN/TiO2. Optical Materials Express, 2022, no. 12 (6), pp. 2199– 2211. DOI: 10.1364/ome.459766.
  6. Salisbury W. W. Absorbent body of electromagnetic waves. Patent US 2599944, 1952.
  7. Nouta R. The jaumann structure in wave‐digital filters. International Journal of Circuit Theory and Applications, 1974, no. 2 (2), pp. 163–174. DOI: 10.1002/cta.4490020205.
  8. Kallambadi Sadashivappa P., Venkatachalam R., Pothu R., Boddula R., Banerjee P., Naik R., Radwan A. B., Al-Qahtan N. Progressive Review of functional nanomaterials-based polymer nanocomposites for efficient EMI shielding. Journal of Composites Science, 2023, no. 7 (2), p. 77. DOI: 10.3390/jcs7020077.
  9. Ayik M., Kurt H., Minin Oleg V., Minin Igor V., Turduev M. Multi-directional cloak design by all-dielectric unit-cell optimized structure. Nanomaterials, 2022, no. 12 (23), p. 4194. DOI: 10.3390/nano12234194.
  10. Adams W., Sadatgol M., Zhang X., Ö Güney D. Bringing the “perfect lens” into focus by near-perfect compensation of losses without gain media. New Journal of Physics, 2022, no. 18 (12), p. 125004. DOI: 10.1088/1367-2630/aa4f9e.
  11. Varamini G., Keshtkar A., Naser-Moghadasi M. Miniaturization of microstrip loop antenna for wireless applications based on Metamaterial Metasurface. AEU – International Journal of Electronics and Communications, 2018, no. 83, pp. 32–39. DOI: 10.1016/j.aeue.2017.08.024.
  12. Wang D. S., Qu S.-W., Chan C. H. Frequency selective surfaces. Handbook of Antenna Technologies, 2016, pp. 471–525. DOI: 10.1007/978-981-4560-44-3_23.
  13. Zhang Z., Zhang L., Chen X., Wu Z., He Y., Lv Y., Zou Y. Broadband metamaterial absorber for low-frequency microwave absorption in the S-Band and C-band. Journal of Magnetism and Magnetic Materials, 2020, no. 497, p. 166075. DOI: 10.1016/j.jmmm.2019.166075.
  14. Sood D., Tripathi C. C. A compact ultrathin ultra-wideband metamaterial microwave absorber. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2017, no. 16 (2), pp. 514–528. DOI: 10.1590/2179-10742017v16i2797.
  15. Ranjan P., Choubey A., Mahto S. K., Sinha R., Barde C. A novel ultrathin wideband metamaterial absorber for X-band applications. Journal of Electromagnetic Waves and Applications, 2019, no. 33 (17), pp. 2341–2353. DOI: 10.1080/09205071.2019.1681299.
  16. Labidi M., Choubani F. Performances enhancement of metamaterial loop antenna for terahertz applications. Optical Materials, 2018, no. 82, pp. 116–122. DOI: 10.1016/j.optmat.2018.05.050.
  17. Fann C.-H., Zhang J., ElKabbash M., Donaldson W. R., Campbell E. M., Guo C. Broadband infrared plasmonic metamaterial absorber with multipronged absorption mechanisms. Opt. Express, 2019, no. 27, pp. 27917–27926. DOI: 10.1364/OE.27.027917.
  18. Yildirim D. U., Ghobadi A., Soydan M. C., Atesal O., Toprak A., Caliskan M. D., Ozbay E. Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface. ACS Photon, 2019, no. 6, pp. 1812–1822. DOI: 10.1021/acsphotonics.9b00636.
  19. Odit M. A., Kapitanova P., Andryieuski A., Belov P., Lavrinenko A. V. Experimental demonstration of water based tunable metasurface. Appl. Phys. Lett., 2016, no. 109, p. 011901. DOI: 10.1063/1.4955272.
  20. Sen G., Banerjee A., Kumar M., Islam S. N., Das S. A dual band metamaterial inspired absorber for WLAN/Wi-MAX applications using a novel I-shaped unit cell structure. Proceedings of the 2016 Asia-Pacific Microwave Conference (APMC). New Delhi, India, 2016, pp. 1–3. DOI: 10.1109/APMC.2016.7931413.
  21. Ma B., Yang X.-M., Li T.-Q., Du X.-F., Yong M.-Y., Chen H.-Y., He H., Chen Y.-W., Lin A., Chen J., Zhou L. Gain enhancement of transmitting antenna incorporated with double-cross-shaped electromagnetic metamaterial for wireless power transmission. Optik, 2016, no. 127, pp. 6754–6762. DOI: 10.1016/j.ijleo. 2016.04.107.
  22. Zhang X., Zhou G. Broadband asymmetric electromagnetic wave absorption tailored by impedance gradation: to construct diode-like absorbers. Mater. Lett., 2015, no. 149, pp. 29–32. DOI: 10.1016/ j.matlet.2015.02.099.
  23. Sood D., Tripathi C. C. A polarization insensitive ultrathin compact triple band metamaterial absorber. Indian J. Pure Appl. Phys., 2018, no. 56, pp. 149–157.
  24. Ji S., Jiang C., Zhao J., Zhang X., He Q. Design of a polarization-insensitive triple-band metamaterial absorber. Optics Communications, 2019, no. 432, pp. 65–70. DOI: 10.1016/j.optcom.2018.09.040.
  25. Ghosh S., Srivastava K. V. An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory. IEEE Antennas and Wireless Propagation Letters, 2015, no. 14, pp. 511–514. DOI: 10.1109/lawp.2014.2369732.
  26. Beeharry T., Yahiaoui R., Selemani K., Ouslimani H. A Broadband Metamaterial Based Radar Absorber. Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018). London, UK, 2018, p. 199. DOI: 10.1049/cp.2018.0558.
  27. Sun L., Sun J., Yang B., Gao X., Long H., Shao Y. A simplified design of broadband metamaterial absorber covering X- and Ku-band. Mater. Res. Express, 2020, no. 6, p. 125805. DOI: 10.1088/2053-1591/ab62f6.
  28. Hoa N. T. Q., Tuan T. S., Hieu L. T., Giang B. L. Facile design of an ultra-thin broadband metamaterial absorber for C-band applications. Sci. Rep., 2019, no. 9, p. 468. DOI: 10.1038/s41598-018-3645366.
  29. De Araujo J. B. O., Siqueira G. L., Kemptner E., Weber M., Junqueira C., Mosso M. M. An Ultrathin and Ultrawideband Metamaterial Absorber and an Equivalent-Circuit Parameter Retrieval Method. IEEE Trans. Antennas Propag., 2020, no. 68, pp. 3739–3746. DOI: 10.1109/tap.2020.2963900.
  30. Veden’kin D. A., Sharonov D. E. Analysis of the characteristics of a controlled frequency-selective surface in the microwave separately. Inzhenernyy vestnik Dona [Engineering news of Don], 2017, no. 2, p. 4233 (In Russian).
  31. Sharonov D. E., Ishkaev T. M. Mathematical modeling of controlled frequency-selective surfaces. Inzhenernyy vestnik Dona [Engineering news of Don], 2018, no. 2, p. 5031 (In Russian).
  32. Latypova A. F. Sverkhshirokopolosnyye radiopogloshchayushchiye struktury s sosredotochennymi i raspredellennymi dissipativnymi elementami. Avtoreferat dissertatsii kandidata tekhnicheskikh nauk [Ultrawideband radio-absorbing structures with concentrated and distributed dissipative elements. Abstract of thesis PhD (Engineering)]. Voronezh, 2015. 18 p. (In Russian).
  33. El Assal A., Breiss H., Benzerga R., Sharaiha A., Jrad A., Harmouch A. Toward an ultra-wideband hybrid metamaterial based microwave absorber. Micromachines, 2020, no. 11 (10), p. 930. DOI: 10.3390/ mi11100930.
  34. Nguyen T. H., Bui S. T., Nguyen T. T., Nguyen T. T., Lee Y., Nguyen M. A., Vu D. L. Metamaterial-basedbperfect absorber: Polarization insensitivity and broadband. Adv. Nat. Sci. Nanosci. Nanotechnol., 2014, no. 5, p. 025013. DOI: 10.1088/2043-6262/5/2/025013.
  35. Viet D., Hien N., Tuong P., Minh N., Trang P., Le L., Lee Y., Lam V. Perfect absorber metamaterials: Peak, multi-peak and broadband absorption. Opt. Commun., 2014, no. 322, pp. 209–213.
  36. Vu D. Q., Le D. H., Dinh H. T., Trinh T. G., Yue L., Le D. T., Vu D. L. Broadening the absorption bandwidth of metamaterial absorber by coupling three dipole resonances. Phys. B Condens. Matter., 2018, no. 532, pp. 90–94. DOI: 10.1016/j.physb.2017.03.046.
  37. Beeharry T., Yahiaoui R., Selemani K. A dual layer broadband radar absorber to minimize electromagnetic interference in radomes. Sci. Rep., 2018, no. 8, p. 382. DOI: 10.1038/s41598-017-18859-w.
  38. Li S.-J., Wu P.-X., Xu H.-X., Zhou Y.-L., Cao X.-Y., Han J.-F., Zhang C., Yang H.-H., Zhang Z. Ultra-wideband and Polarization-Insensitive Perfect Absorber Using Multilayer Metamaterials, Lumped Resistors, and Strong Coupling Effects. Nanoscale Res. Lett., 2018, no. 13, p. 386. DOI: 10.1186/s11671-018-2810-0.
  39. Nguyen T. Q. H., Cao T. N., Nguyen H., Bach L. G. Numerical study of a broadband metamaterial absorber using a single split circle ring and lumped resistors for X-band applications. AIP Adv., 2020, no. 10, p. 035326. DOI: 10.1063/1.5143915.
  40. Ghosh S., Nguyen T. T., Lim S. Recent progress in angle-insensitive narrowband and broadband metamaterial absorbers. EPJ Appl. Metamaterials, 2019, no. 6, p. 12. DOI: 10.1051/epjam/2019010.
  41. Nguyen T. T., Lim S. Angle- and polarization-insensitive broadband metamaterial absorber using resistive fan-shaped resonators. Appl. Phys. Lett., 2018, no. 112, p. 021605. DOI: 10.1063/1.5004211.
  42. Wang W., Huang H., Sima B., Zhu B., Feng Y. Broadband Metamaterial Microwave Absorber Utilizing Both Magnetic and Electric Resonances. Proceedings of the 2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC). Xuzhou, China, 2018, pp. 1–3. DOI: 10.1109/ CSQRWC.2018.8455549.
  43. Yao Z., Xiao S., Jiang Z., Yan L., Wang B.-Z., Zhixin Y., Shaoqiu X., Li Y. On the Design of Ultrawideband Circuit Analog Absorber Based on Quasi-Single-Layer FSS. IEEE Antennas Wirel. Propag. Lett., 2020, no. 19, pp. 591–595. DOI: 10.1109/lawp.2020.2972919.
  44. Ghosh S., Srivastava K. V., Bhattacharyya S. Design, characterisation and fabrication of a broadband polarisation-insensitive multi-layer circuit analogue absorber. IET Microwaves, Antennas Propag., 2016, no. 10, pp. 850–855. DOI: 10.1049/iet-map.2015.0653.
  45. Pometcu L., Benzerga R., Sharaiha A., Pouliguen P. Combination of artificial materials with conventional pyramidal absorbers for microwave absorption improvement. Mater. Res. Bull., 2017, no. 96, pp. 86–93. DOI: 10.1016/j.materresbull.2016.12.050.
  46. Shan D., He L., Deng L., Luo H., Liao C., Peng Y., Xu Y., Huang S. Comptibility of optical transparency and microwave absorption in C-band for the metamaterial with second-order cross fractal structure. Phys. E Low Dimens. Syst. Nanostruct., 2020, no. 116, p. 113756. DOI: 10.1016/j.physe.2019.113756.
  47. Özden K., Yücedağ O. M., Kocer H. Metamaterial based broadband RF absorber at X-band. AEU Int. J. Electron. Commun., 2016, no. 70, pp. 1062–1070. DOI: 10.1016/j.aeue.2016.05.002.
  48. Xiao D., Tao K. Ultra-compact metamaterial absorber for multiband light absorption at mid-infrared frequencies. Appl. Phys. Express, 2015, no. 8, p. 102001. DOI: 10.7567/APEX.8.102001.
  49. Yazarel E., Armaǧan M., Çakir K., Bural B., Budak B. Y., Kazmanli K., Atasever T. C. Design and fabrication of X band frequency selective surface. 7th International Electromagnetic Compatibility Conference (EMC Turkiye), Istanbul, Turkey, 2023, pp. 1–6. DOI: 10.1109/emcturkiye59424.2023.10287513.
  50. Wen D.-E., Zhang Q., Huang X., Ding F., Huang X. A bandwidth-enhanced metamaterial absorber based on dual-band sub-cells. Optik, 2016, no. 127 (14), pp. 5585–5590. DOI: 10.1016/j.ijleo.2016.03.063.
  51. Qi X., Xu J., Hu Q., Deng Y., Xie R., Jiang Y., Zhong W., Du Y. Metal-free carbon nanotubes: synthesis, and enhanced intrinsicmicrowave absorption properties. Sci. Rep., 2016, no. 6, p. 28310. DOI: 10.1038/ srep28310.
  52. Joshi A., Bajaj A., Singh R., Anand A. Processing of graphene nanoribbon based hybrid composite for electromagnetic shielding. Composites, 2015, part B, Engineering, no. 69, pp. 472–477. DOI: 10.1016/ j.compositesb.2014.09.014.
  53. Landy N. I., Sajuyigbe S., Mock J. J., Smith D. R., Padilla W. J. Perfect metamaterial absorber. Physical Review Letters, 2008, no. 100 (20), p. 207402. DOI: 10.1103/physrevlett.100.207402.
  54. Deng G., Lv K., Sun H., Yang J., Yin Z., Li Y., Chi B., Li X. An ultrathin, triple-band metamaterial absorber with wide-incidentangle stability for conformal applications at X and Ku frequency band. Nanoscale Res. Lett., 2020, no. 15 (1), pp. 1–10. DOI: 10.1186/s11671-020-03448-0.
  55. Ramya S., Srinivasa Rao I. An ultrathin compact wideband metamaterial absorber. Radioengineering, 2018, no. 27 (2), pp. 364–372. DOI: 10.13164/re.2018.0364.
  56. Li S. J., Wu P. X., Xu H. X., Zhou Y. L., Cao X. Y., Han J. F., Zhang C., Yang H. H., Zhang Z. Ultra-wideband and polarization-insensitive perfect absorber using multilayer metamaterials, lumped resistors, and strong coupling effects. Nanoscale Res. Lett., 2018, no. 13 (1), p. 386. DOI: 10.1186/s11671-018-2810-0.
  57. Mol V. L., Aanandan C. An ultrathin microwave metamaterial absorber with enhanced bandwidth and angular stability. J. Phys. Comm., 2017, no. 1 (1), p. 015003. DOI: 10.1088/2399-6528/aa80c1.
  58. Sood D., Tripathi C. C. A compact ultrathin ultra-wideband metamaterial microwave absorber. Microwaves, Optoelec. Electromag. Appl., 2017, no. 16 (2), pp. 514–528. DOI: 10.1590/2179-10742017v16i2797.
  59. Nguyen T. T., Lim S. Angle- and polarization-insensitive broadband metamaterial absorber using resistive fan-shaped resonators. Appl. Phys. Lett., 2018, no. 112 (2), p. 021605. DOI: 10.1063/1.5004211.
  60. Mishra R. K., Gupta R. D., Datar S. Metamaterial microwave absorber (MMA) for electromagnetic interference (EMI) shielding in X-band. Plasmonics, 2021, no. 16 (6), pp. 2061–2071. DOI: 10.1007/ s11468-021-01465-y.
  61. Skolnik M. I. Introduction to radar systems. New York, McGraw-hill Inc., 1980. 572 p.
  62. Moschytz G. Trade-offs in sensitivity, component spread and component tolerance in active filter design. Trade-Offs in Analog Circuit Design, 2002, no. 1, pp. 315–339. DOI: 10.1007/0-306-47673-8_11.
  63. Zabri S. N., Cahill R., Schuchinsky A. Compact FSS absorber design using resistively loaded quadruple hexagonal loops for bandwidth enhancement. Electronics Letters, 2015, no. 51 (2), pp. 162–164. DOI: 10.1049/el.2014.3866.
  64. Shang Y., Shen Z., Xiao S. On the design of single-layer circuit analog absorber using double-squareloop array. IEEE Trans. Antennas Propag., 2013, no. 61 (12), pp. 6022–6029. DOI: 10.1109/TAP.2013.2280836.
  65. Martinez I., Panaretos A. H., Werner D. H., Oliveri G., Massa A. Ultra-thin reconfigurable electromagnetic metasurface absorbers. 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, Sweden, 2013, pp. 1784–1788.
  66. Liang C., Z hai H., Zhan C., Li Z. A triple-band ultrathin metamaterial absorber with wide-angle and polarization stability. IEEE Antennas Wireless Propag. Lett., 2015, no. 14, pp. 241–244.
  67. Wang B.-X., He Y., Xu N., Wang X., Wang Y., Cao J. Design of dual-band polarization controllable metamaterial absorber at terahertz frequency. Results in Physics, 2020, no. 17, p. 103077. DOI: 10.1016/j.rinp.2020.103077.

15.07.2024