DFT CALCULATION OF Zn-CHLORINE VIBRATIONAL STATES

UDC 543.42+535.34

 

Gladkov Lev L’vovich – DSc (Physics and Mathematics), Associate Professor, Professor, the Department of Physical and Mathematical Foundations of Informatics. Belarusian State Academy of Communications (8/2, Francysk Skaryna str., 220114, Minsk, Republic of Belarus). E-mail: llglad@tut.by Gladkova Galina Aleksandrovna – PhD (Engineering), Associate Professor, Assistant Professor, the Department of Higher Mathematics. Belarusian Military Academy (220, Nezavisimosti Ave., 220057, Minsk, Republic of Belarus). E-mail: llglad@tut.by

DOI: https://doi.org/10.52065/2520-6141-2024-278-6.

 

Key words: metallochlorins, normal coordinate calculations, DFT calculations.

 

For citation: Gladkov L. L., Gladkova G. A. DFT calculation of Zn-chlorine vibrational states. Proceedings of BSTU, issue 3, Physics and Mathematics. Informatics, 2024, no. 1 (278), pp. 39–42 (In Russian). DOI: 10.52065/2520-6141-2024-278-6.

Abstract

The geometric structure, normal vibrations and intensities in the IR spectrum of Zn-chlorin were calculated using the density functional method. Geometry optimization showed a violation of the planar structure of the hydrogenated pyrrole ring, one of the Cb atoms of which is located above the plane of the macrocycle, and the other below it. The bond of the zinc atom to the nitrogen of this ring is 0.05 Å larger than other zinc-nitrogen bonds. The interpretation of vibrational and fine-structure electronicvibrational spectra of metallochlorins has been revised.

Download

Download

References

  1. Kozlowski P. M., Jarzecki A. A., Pulay P. Vibrational assignment and definite harmoniс force field for porphine. 1. Scaled quantum mechanical results and comparison with empirical force field. J. Phys. Chem., 1996, vol. 100, no. 17, pp. 7007–7013.
  2. Berezin K. V., Nechaev V.V. Calculation of frequencies of normal vibrations of chlorin by the density functional method. Zhurnal prikladnoy spektroskopii [Journ. Appl. Spectr.], 2004, vol. 71, no. 3, pp. 283–294 (In Russian).
  3. Lopes J. M . S., Sampaio R. N., Ito A. S., Batista A. A., Machado A. E H., Araujo P. T., Barbarosa Neto N. M. Evolution of electronic and vibronic transitions in metal(II) meso-tetra(4-pyridyl)porphyrins. Spectrochim. Acta Part A. Mol. Biomol. Spectrosc., 2019, vol. 215, pp. 327–333.
  4. Gladkov L. L. Molekylyarnaya stryktyra i kolebatel'naya spektroskopiya tetrapirrol’nykh soyedineniy [Molecular structure and vibrational spectroscopy of tetrapyrrole compounds]. Minsk, BGAS Publ., 2023. 216 p. (In Russian).
  5. Gladkov L. L., Starukhin A. S., Shulga A. M. Fine-structure fluorescence spectra of metallochlorins. Zhurnal prikladnoy spektroskopii [Journ. Appl. Spectr.], 1986, vol. 45, no. 3, pp. 410–414 (In Russian).
  6. Gladkov L. L., Starukhin A. S., Shulga A. M. Interpretation of vibrational spectra of chlorin metal complexes. Zhurnal prikladnoy spektroskopii [Journ. Appl. Spectr.], 1987, vol. 47, no. 2, pp. 231–236 (In Russian).
  7. Solovyov K. N., Gladkov L. L., Gradyushko A. T., Ksenofontova N. M., Shulga A. M., Starukhin A. S. Resonance Raman spectra of deuterated metalloporphins. J. Mol. Struct., 1978, vol. 45, pp. 267–305.
  8. Laikov D.N. Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets. Chem. Phys. Lett., 1997, vol. 281, no. 1, pp. 151–156.
  9. Gladkov L. L., Ksenofontova N. M., Solovyov K. N., Starukhin A. S., Shulga A. M., Gradyshko A. T. Vibrational spectra of chlorin and deuterated derivatives. Zhurnal prikladnoy spektroskopii [Journ. Appl. Spectr.], 1983, vol. 38, no. 4, pp. 598–606 (In Russian).
  10. Weiss C. C., Kobayashi H., Gouterman M. Spectra of porphyrins. Part III. Self-consistent molecular orbital calculations of porphyrins and related ring systems. J. Mol. Spectrosc., 1965, vol. 16, no. 2, pp. 416–450.

26.12.2023