BIOCOMPONENT FOR ELASTOMERIC COMPOSITIONS
UDC 678.046.3
Keywords: carbon-silicon component, polar rubber, combination of non-polar rubbers, technological properties, performance indicators, ozone aging, thermal aging, wear resistance.
For citation: Bobrova V. V., Prokopchuk N. R., Efremov S. A., Nechipurenko S. V. Biocomponent for elastomeric compositions. Proceedings of BSTU, issue 2, Chemical Engineering, Biotechnologies, Geoecology, 2023, no. 1 (265), pp. 112–121. DOI: https://doi.org/10.52065/2520-2669-2023-265-1-13 (In Russian).
Abstract
The main purpose of this work was to establish the influence of carbon-silicon composite (CSC) as a new biocomponent of industrial formulations of elastomeric compositions on the main technological and operational characteristics of vulcanizates. The objects of the study were elastomeric compositions based on polar butadiene-nitrile rubber (BNKS-18) and a combination of synthetic nonpolar rubbers SKI-3 + SKD containing CSC in various dosages. A study of the viscosity according to the Muni of rubber mixtures based on BNKS-18 showed that the CSC reduces this indicator to 9.6%, in the case of SKI-3 + SKD, the viscosity according to the Muni will increase to 5.8%. The determination of the kinetic parameters of the vulcanization process of rubber mixtures revealed that when the CSC is introduced into rubber mixtures based on BNKS-18, the time to achieve the optimum vulcanization increases, at the same time, the resistance of rubber mixtures to premature vulcanization increases. The results of determining the rheological parameters of rubber mixtures based on SKI-3 + SKD containing CSC revealed an insignificant change in the time to achieve the optimum vulcanization. Determination of the main operational characteristics of the studied elastomeric compounds showed that the use of CSC in dosages up to 10 wt. h. allows to obtain vulcanizates with a given set of technical characteristics of products.
References
- Fan Y., Fowler G. D., Norris C. Potential of a Pyrolytic Coconut Shell as a Sustainable Biofiller for Styrene – Butadiene Rubber. Industrial & Engineering Chemistry Research, 2017, vol. 56, no. 16, pp. 4779–4791. DOI: 10.1021/acs.iecr.7b00405.
- Kumar R., Singh T., Singh H. Solid waste-based hybrid natural fiber polymeric composites. Journal of Reinforced Plastics and Composites, 2015, vol. 34, no. 23, pp. 1979–1985. DOI: 10.1177/0731684415599596.
- Chaudhary D. S., Jollands M. C., Cser F. Recycling rice hull ash: A filler material for polymeric composites? Polymers for Advanced Technologies, 2004, vol. 23, pp. 147−155. DOI: 10.1002/adv.20000.
- Kaci M., Djidjelli H., Boukerrou A., Zaidi L. Effect of wood filler treatment and EBAGMA compatibilizer on morphology and mechanical properties of low density polyethylene/olive husk flour composites. Express Polymer Letters, 2007, vol. 1, pp. 467–473. DOI: 10.3144/EXPRESSPOLYMLETT.2007.65.
- Kim H.-S., Yang H.-S., Kim H.-J., Park H.-J. Thermogravimetric analysis of rice husk flour filled thermoplastic polymer composites. Journal of Thermal Analysis and Calorimetry, 2004, vol. 76, no. 2, pp. 395–404. DOI: 10.1023/B:JTAN.0000028020.02657.9B.
- Park B.-D., Wi S. G., Lee K. H., Singh A. P., Yoon T.-H., Kim Y. S. Characterization of anatomical features and silica distribution in rice husk using microscopic and micro-analytical techniques. Biomass and Bioenergy, 2003, vol. 25, no. 3, pp. 319–327. DOI: 10.1016/S0961-9534(03)00014-X.
- Arayapranee W., Na-Ranong N., Rempel G. L. Application of rice husk ash as fillers in the natural rubber industry. Journal of Applied Polymer Science, 2005, vol. 98, no. 1, pp. 34–41. DOI: 10.1002/app.21004.
- Soltani N., Bahrami A., Pech-Canul M. I., Gonzales L. A. Review on the physicochemical treatments of rice husk for production of advanced materials. Chemical Engineering Journal, 2015, vol. 264, pp. 899–935. DOI: 10.1016/j.cej.2014.11.056.
- Alyosef H. A., Eilert A., Welscher J., Ibrahim S. S., Denecke R., Schwieger W., Enke D. Characterization of biogenic silica generated by thermo chemical treatment of rice husk. Particulate Science and Technology: An International Journal, 2013, vol. 31, no. 6, pp. 524–532. DOI: 10.1080/02726351.2013.782931.
- Bobrova V. V., Prokopchuk N. R., Efremov S. A., Nechipurenko S. V. Сarbon-silicon filler for elastomer compositions. Trudy BGTU [Proceedings of BSTU], issue 2, Chemical Engineering, Biotechnologies, Geoecology, 2022, no. 1 (253), pp. 89–95 (In Russian).
- GOST R 54552–2011. Rubbers and rubber compounds. Determination of viscosity, stress relaxation and scorch characteristics using a Mooney viscometer. Moscow, Standartinform Publ., 2018. 27 p. (In Russian).
- GOST 12535–84. A mixture of rubber. Method for the determination of vulcanization characteristics vulcameter. Moscow, Izdatel’stvo standartov Publ., 1985. 33 p. (In Russian).
- ASTM D6601–02 (2008). Standard test method for rubber properties – measurement of cure and after-cure dynamic properties using a rotorless shear rheometer. Available at: http://www.astm.org (accessed 28.06.2016).
- GOST 270–75. Method for determining elastic-strength properties under tension. Moscow, Izdatel’stvo standartov Publ., 1975. 29 p. (In Russian).
- GOST 9.024–74. Unified system of protection against corrosion and aging. Rubber. Test methods for resistance to thermal aging. Moscow, Izdatel’stvo standartov Publ., 1974. 12 p. (In Russian).
- GOST 263–75. Shore A hardness determination method. Moscow, Izdatel’stvo standartov Publ., 1989. 7 p. (In Russian).
- GOST 9.029–74. Test methods for aging resistance under static compression deformation. Moscow, Izdatel’stvo standartov Publ., 1982. 7 p. (In Russian).
- GOST 9.030–74. Rubber. Test methods for resistance in an unstressed state to the effects of liquid aggressive media. Moscow, Standartinform Publ., 2006. 10 p. (In Russian).
- GOST 9.026–74. Unified system of protection against corrosion and aging. Rubber. Methods of accelerated tests for resistance to ozone and thermal light-ozone aging. Moscow, Izdatel’stvo standartov Publ., 1976. 17 p. (In Russian).
- GOST 12251–77. Rubber. A method for determining the abrasion resistance during rolling with slippage. Moscow, Izdatel’stvo standartov Publ., 1978. 8 p. (In Russian).
- Ovcharov V. I., Burmistr M. V., Tyutin V. A. Svoystva rezinovykh smesey i rezin: otsenka, regulirovaniye, stabilizatsiya [Properties of rubber compounds and rubbers: evaluation, regulation, stabilization]. Moscow, Sant-TM Publ., 2001. 400 p. (In Russian).
- Kruželák J., Sýkora R., Hudec I. Sulphur and peroxide vulcanisation of rubber compounds – overvie. Chemical Papers, 2016, vol. 70, pp. 1533–1555.
- Zhovner N. A., Chirkova N. V., Hlebov G. A. Struktura i svoystva materialov na osnove elastomerov [Structure and properties of elastomer-based materials]. Kirov, VyatGU Publ.; Omsk, filial RosZITLP Publ., 2003. 276 p. (In Russian).
- Zaghdoudi M., Kömmling A., Jaunich M., Wolff D. Oxidative ageing of elastomers: experiment and modeling. Continuum Mechanics and Thermodynamic, 2022, vol. 34, pp. 1563–1577. DOI: 10.1007/s00161-022-01093-9.