APPLICATIONS OF POLYCARBOXYLATE LIGNINS IN THE SYNTHESIS OF UREA-FORMALDEHYDE RESINS

UDC 678.652’41’21:665.947.4

  • Kazhamiaka Aleksandr Aleksandrovich – external doctorate student, Deputy General Director for Production. JSC “Vitebskdrev” (7, Stakhanovskiy lane, 210008, Vitebsk, Republic of Belarus). E-mail: kozhemyako.a@wood.by

  • Kuzemkin Dmitriy Vladimirovich – PhD (Engineering), Assistant Professor, the Department of Oil and Gas Processing and Petroleum Chemistry. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: kuziomkin@mail.ru

  • Gonchar Aleksandr Nikolaevich – Deputy Director for Scientific Work. SynergyCom SOOO (5, Urozhaynaya str., 247484, Prigorodnaya village, Rechitskiy district, Gomel region, Republic of Belarus). E-mail: agonchar@synergyhorizon.com

  • Dubodelova Ekaterina Vladimirovna – PhD (Engineering), Assistant Professor, the Department of Woodworking Technology. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: katedubodelova@tut.by

  • Shpak Sergey Ivanovich – PhD (Engineering), Assistant Professor, the Department of Chemical Processing of Wood. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: spak_s@belstu.by

Keywords: polycarboxylate lignin, urea-formaldehyde resin, synthesis, particle boards, free formaldehyde content, tensile strength.

For citation: Kazhamiaka А. А., Kuzemkin D. V., Gonchar А. N., Dubodelova E. V., Shpak S. I. Applications of polycarboxylate lignins in the synthesis of urea-formaldehyde resins. Proceedings of BSTU, issue 2, Chemical Engineering, Biotechnologies, Geoecology, 2023, no. 1 (265), pp. 104–111. DOI: https://doi.org/10.52065/2520-2669-2023-265-1-12 (In Russian).

Abstract

Compositions of urea-formaldehyde (UF) resin modified with polycarboxylate lignin for particle boards have been developed. Valorization products of acidic and alkaline nature based on hydrolysis lignin marketed by SynergyCom SOOO under the brand name S-Drill™ BND have been used to promote the formation of a branched structure with an increased amount of methylol groups in the resulting oligomers by adjusting the concentration of hydrogen ions at different stages of resin synthesis. Tests of the modified UF resins showed that free formaldehyde content in the modified resin after synthesis over a period of 24 hours decreases with a lower intensity compared to the control sample by 70.0 and 57.6%, respectively. At the same time, the gelatinization time at 100°C increases by 31.4% for the control resin sample, and for the experimental one, by 2.6%. Samples of particle boards obtained using urea-formaldehyde resin modified with polycarboxylate lignin met the requirements of GOST 10632‒2014 for grade R1. For samples of particle boards on experimental resins, an increase in tensile strength perpendicular to the face by an average of 43% was observed, which indicates a high level of adhesion of the modified resins to the wood substrate. The results of the research have passed a comprehensive semi-industrial approbation at JSC “Rechitsadrev”.

References

  1. Paananen H., Pakkanen T. T. Kraft Lignin Reaction with Paraformaldehyde. Holzforschung, 2020, vol. 74, рр. 663‒672. DOI: 10.1515/hf-2019-0147.
  2. Gao S., Liu Y., Wang C., Chu F., Xu F., Zhang D. Synthesis of Lignin-Based Polyacid Catalyst and Its Utilization to Improve Water Resistance of Urea-formaldehyde Resins. Polymers, 2020, vol. 12, аrticle 175. DOI: 10.3390/polym12010175.
  3. Varankina G. S., Rusakov D. S., Ivanova A. V., Ivanov A. M. Reducing the toxicity of glued woodbased materials, modified with lignosulphonates of urea-formaldehyde resins. Sistemy. Metody. Tekhnologii [Systems. Methods. Technologies], 2016, no. 3 (31), pp. 154–160. DOI: 10.18324/2077-5415-2016-3-154-160 (In Russian).
  4. Younesi-Kordkheili H., Pizzi A. A Comparison between Lignin Modified by Ionic Liquids and Glyoxalated Lignin as Modifiers of Urea-Formaldehyde Resin. The Journal of Adhesion, 2017, vol. 93, pp. 1120‒1130. DOI: 10.1080/00218464.2016.1209741.
  5. Tarasov S. M., Azarov V. I., Kononov G. N., Ivanova A. M. Cationic starches are promising modifiers of aminoaldehyde oligomers. Lesnoy vestnik [Forest Bulletin], 2010, no. 5, рр. 152‒156 (In Russian).
  6. Lettner M., Solt P., Rofiiger B., Pufky-Heinrich D., Jaaskelainen A.-S., Schwarzbauer P., Hesser F. From Wood to Resin ‒ Identifying Sustainability Levers through Hotspotting Lignin Valorisation Pathways. Sustainability, 2018, vol. 10, аrticle 2745. DOI: 10.3390/su10082745.
  7. Timofeyev I. V., Ivanov D. V., Leonovich A. A., Krutov S. M. Usage of modified lignin to reduce the toxicity of wood boards. Izvestiya Sankt-Peterburgskoy lesotekhnicheskoy akademii [News of the St. Petersburg Forestry Academy], 2018, issue 22, pp. 240‒253. DOI: 10.21266/2079-4304.2018.222.240-253 (In Russian).
  8. Chakar F. S., Ragauskas A. J. Review of current and future softwood kraft lignin process chemistry. Industrial Crops and Products, 2004, vol. 20, pp. 131‒141. DOI: 10.1016/j.indcrop.2004.04.016.
  9. Rinaldi R., Jastrzebski R., Clough M. T., Ralph J., Kennema M., Bruijnincx P. C. A., Weckhuysen B. M. Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angew. Chem. Int. Ed., 2016, issue 55, pp. 8164‒8215. DOI: 10.1002/anie.201510351.
  10. De Wild P. J., Huijgen W. J. J., Gosselink R. J. A. Lignin pyrolysis for profitable lignocellulosic biorefineries. Biofuels Bioprod. Bioref., 2014. vol. 8, pp. 645‒657. DOI: 10.1002/bbb.1474.
  11. Deyneko I. P. Utilization of lignins: achievements, problems and prospects. Khimiya rastitelʼnogo syrʼya [Chemistry of plant raw materials], 2012, no. 1, pp. 5‒20 (In Russian).
  12. Qu Y., Luo H., Li H., Xu J. Comparison on structural modification of industrial lignin by wet ball milling and ionic liquid pretreatment. Biotechnology Reports, 2015, vol. 6, pp. 1‒7. DOI: 10.1016/j.btre.2014.12.011.
  13. Wang Y.-Y., Meng X., Pu Y. J., Ragauskas A. Recent Advances in the Application of Functionalized Lignin in Value-Added Polymeric Materials. Polymers, 2020, vol. 12, аrticle 2277. DOI: 10.3390/polym12102277.
  14. Bajwa D. S., Pourhashem G., Ullah A. H., Bajwa S. G. A concise review of current lignin production, applications, products and their environmental impact. Industrial Crops and Products, 2019, vol. 139, аrticle 111526. DOI: 10.1016/j.indcrop.2019.111526.
  15. Kai D., Tan M. J., Chee P. L., Chua Y. K., Yap Y. L., Loh X. J. Towards lignin-based functional materials in a sustainable world. Green Chemistry, 2016, vol. 18, pp. 1175‒1200. DOI: 10.1039/C5GC02616D.
  16. Zhang J., Wang W., Zhou X., Liang J., Du G., Wu Z. Lignin-based adhesive crosslinked by furfuryl alcohol-glyoxal and epoxy resins. Nordic Pulp & Paper Research Journal, 2019, vol. 34, issue 2, рр. 228‒238. DOI: 10.1515/npprj-2018-0042.
  17. Evstigneyev E. I., Shevchenko S. M. Lignin valorization and cleavage of arylether bonds in chemical processing of wood: a mini-review. Wood Scienсе and Technology, 2020, vol. 54, pp. 787‒820. DOI: 10.1007/s00226-020-01183-4.
  18. Ghorbani M., Liebner F., van Herwijnen H. W. G., Solt P., Konnerth J. Ligneous resole adhesives for exterior-grade plywood. Eur. J. Wood Prod., 2018, vol. 76, pp. 251‒258. DOI: 10.1007/s00107-017-1249-9.
  19. Kazhamiaka А. А., Dubodelova E. V., Gonchar А. N., Shpak S. I. Improving production efficiency medium density fiberboard. Trudy BGTU [Proceedings of BSTU], issue 2, Chemical Engineering, Biotechnologies, Geoecology, 2022, no. 2 (259), pp. 32–40. DOI: 10.52065/2520-2669-2022-259-2-32-40.
18.11.2022