USE OF BARK IN THE PRODUCTION OF THERMO INSULATING BUILDING MATERIALS (REVIEW)

UDC 674.817

  • Kuzmin Vladimir − PhD (Engineering), Leading researcher, the Rheophisics and Macrokinetics Laboratory. A. V. Luikov Institute of Heat and Mass Transfer of the National Academy of Sciences of Belarus (15, Brovki str., 220072, Minsk, Republic of Belarus). E-mail: kuzminva@tut.by

  • Radkevich Luidmila − Researcher, the Rheophisics and Macrokinetics Laboratory. A. V. Luikov Institute of Heat and Mass Transfer of the National Academy of Sciences of Belarus (15, Brovki str., 220072, Minsk, Republic of Belarus). E-mail: l.radkevich.69@gmail.com

  • Radkevich Luidmila − Doctor of Sciences, Professor, Vice dean of Faculty of Wood Engineering and Creative Industries. University of Sopron (Sopron, Bajcsy-Zsilinszky u. 4, 9400, Hungary). E-mail: pasztory.zoltan@uni-sopron.hu

  • Bazhelka Ihar − PhD (Engineering), Associate Professor, Head of the Department of Woodworking Technology. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: bikbstu@mail.ru

  • Fedosenko Ivan − PhD (Engineering), Assistant Professor, the Department of Woodworking Technology. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: ivan.fedosenko@mail.ru

  • Dubovskaya Lyudmila − PhD (Engineering), Associate Professor, Professor, the Department of Interior and Equipment. Belarusian State Academy of Arts (81a, Nezavisimosti Ave., 220012, Minsk, Republic of Belarus). E-mail: luda.dubovskaya@tut.by

  • Kanavalava Anastasiya − PhD student, the Department of Woodworking Technology. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: anastasiyakonov@gmail.com

  • Mialeshka Volha − PhD student, the Department of Woodworking Technology. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: volhamialeshka@outlook.com

Keywords: tree bark, bark properties, bark use, bark analysis, thermal insulation materials.

For citation: Kuzmin V., Radkevich L., Pásztory Z., Bazhelka I., Fedosenko I., Dubovskaya L., Kanavalava A., Mialeshka V. Use of bark in the production of thermo insulating building materials (review). Proceedings of BSTU, issue 1, Foresty. Nature Management. Processing of Renewable Resources, 2023, no. 1 (264), pp. 177–186. DOI: https://doi.org/10.52065/2519-402X-2023-264-19 (In Russian).

Abstract

This article summarizes some of the research results and industrial application prospects related to tree bark. Tree bark is a by-product of forestry and is currently of little use. However, the bark has good physicalmechanical properties and is available in large quantities. The purpose of this study was to analyze the possibility of using the bark as one of the components of thermal insulation materials. The results of the analysis show that thermal insulation materials made from bark can achieve a thermal conductivity coefficient of 0.042–0.065 W/(m·K). Improving the thermal insulation properties of panels can be achieved by changing the qualitative and quantitative composition of the compositions, particle orientation, etc. Reinforcement and heat treatment of the bark further increase the resistance to water absorption and swelling of finished products. The porosity and hydroxyl groups of phenolic compounds capable of binding formaldehyde ensure the environmental friendliness of the use of bark products. In addition, due to the content of natural resins in the bark, thermal insulation panels based on it can be made without the use of binders. The content of Cesium-137 in the bark of trees growing in areas contaminated with radionuclides can be reduced by 10 times by adding lime to the composition in the manufacture of products. The bark of trees has better soundproofing properties than chipboard and MDF, OSB.

References

  1. Tsyvin M. M. Ispol’sovaniye drevesnoy kory [The use of wood bark]. Moscow, Lesnaya promyshlennost’ Publ., 1973. 96 p. (In Russian).
  2. Fedosenko I. G. The use of tree bark in the production of structural and heat-insulating plates. Lesnaya inzheneriya, materialovedeniye i dizayn: materialy dokladov 84-y nauchno-tekhnicheskoy  konferentsii) [Forest engineering, materials science and design: materials of reports of the 84th scientific and technical conference]. Minsk, 2020, pp. 78–79 (In Russian).
  3. Kain G., Lienbacher B., Barbu M. C., Plank B., Richter K., Petutschnigg A. Tree bark insulation panels for special purpose insulation: Evaluation and discrete modeling of structure property relationships. World Conference on Timber Engineering, 2016. Available at: https://www.researchgate.net/publication/311807447_Tree_bark_insulation_panels_for_special_purpose_insulation_Evaluation_and_discrete_modeling_of_structure_property_relationships (accessed 10.10.2022).
  4. Sato Y., Konishi T., Takahashi A. Development of insulation material using natural tree bark. Transactions of the Materials Research Society of Japan, 2004, vol. 29, no. 5, pp. 1937–1940. Available at: https://www.mrs-j.org/pub/tmrsj/vol29_no5/vol29_no5_1937.pdf (accessed 10.10.2022).
  5. Ngueho Yemele M. C., Koubaa A., Cloutier A., Soulounganga P., Wolcott M. Effect of bark fiber content and size on the mechanical properties of bark/HDPE composites. Composites. Part A: Applied Science and Manufacturing, 2010, vol. 41, issue 1, pp. 131–137. DOI: 10.1016/j.compositesa.2009.06.005.
  6. Fuentealba C., Montory J., Vega J., Norambuena-Contreras J. New Biobased composite material using bark fibres Eucalyptus. Biocomp 2016: 13th Pacific Rim Bio-Based Composite Symposium. Available at: https://www.researchgate.net/publication/314240089_New_Biobased_composite_material_using_bark_fibres_Eucalyptus (accessed 10.10.2022).
  7. Danilov V. E., Aizenshtadt A. M. The use of modified wood bark of Scots pine as backfill heat and sound insulation. Lesnoy zhurnal [Forest Journal], 2019, vol. 2, p. 111. DOI: 10.37482/0536-1036-2019-2-111 (In Russian).
  8. Kain G., Barbu M. C., Hinterreiter S., Richter K., Petutschnigg A. Bark as Heat Insulation Material. Bioresources, 2013, vol. 8, issue 3, pp. 3718–3731. DOI:10.15376/biores.8.3.3718-3731.
  9. Pasztory Z., Mohachine I., Gorbacheva G., Sanaev V. Investigation of thermal insulation capacity of tree bark. Forestry engineering journal, 2017, vol. 7, no. 1, pp. 157–161. DOI: 10.12737/25206.
  10. Kain G., Lienbacher B., Barbu M. C., Plank B., Richter K., Petutschnigg A. Evaluation of relationships between particle orientation and thermal conductivity in bark insulation board by means of CT and discrete modeling. Case Studies in Nondestructive Testing and Evaluation, 2016, vol. 6, part B, pp. 21–29. DOI: 10.1016/j.csndt.2016.03.002.
  11. Kain G., Güttler V., Barbu M. C., Petutschnigg A., Richter K., Gianluca T. Density related properties of bark insulation boards bonded with tannin hexamine resin. European Journal of Wood and Wood Products, 2014, vol. 72, issue 4, pp. 417–424. DOI: 10.1007/s00107-014-0798-4.
  12. Kain G., Lienbacher B., Barbu M. C., Richter K., Petutschnigg A. Larch (Larix decidua) bark insulation board: interactions of particle orientation, physical-mechanical and thermal properties. European Journal of Wood and Wood Products, 2018, vol. 76, issue 2. DOI: 10.1007/s00107-017-1271-y.
  13. Rowell R. M., Youngs R. L. Dimensional Stabilization of Wood In Use. Forest Service US. Department of Agriculture Forest Service, 1981. DOI: 10.2737/FPL-RN-243.
  14. Rapp A. O. Review on heat treatments of wood. Proceedings of Special Seminar, 2001. Available at: https://projects.bre.co.uk/ecotan/pdf/Heat_treatment_processes_Andreas_Rapp%20.pdf (accessed 10.10.2022).
  15. Tjeerdsma B. F., Militz H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Als Roh- Und Werkstoff, 2005, vol. 63, issue 2, pp. 102–111. DOI: 10.1007/s00107-004-0532-8.
  16. Esteves B. M., Pereira H. M. Wood modification by heat treatment: A review. Bioresources, 2009, vol. 4, issue 1, pp. 370–404. DOI: 10.15376/biores.4.1.370-404.
  17. Navi P., Sandberg D. Heat Treatment. In: Thermo-hydromechanical processing of wood. Wood Material Science & Engineering, 2013, vol. 8, issue 1, pp. 64–88. DOI: 10.1080/17480272.2012.751935.
  18. Pasztory Z., Tsalagkas D., Horvath N., Borcsok Z. Insulation Panels Made from Thermally Modified Bark. Acta Silvatica et Lignaria Hungarica, 2019, vol. 15, no. 1, pp. 23–34. DOI: 10.2478/aslh-2019-0002.
  19. Pasztory Z., Borcsok Z., Bazhelka I. K., Kanavalava A. A., Meleshko O. V. Thermal insulation panels from tree bark. Trudy BGTU [Proceedings of BSTU], issue 1, Forestry. Nature Management. Processing of Renewable Resources, 2021, no. 1, pp. 141–149.
  20. Blanchet P., Cloutier A., Riedl B. Particleboard made from hammer milled black spruce bark residues. Wood Science and Technology, 2000, vol. 34, no. 1, pp. 11–19. DOI: 10.1007/s002260050003.
  21. Pásztory Z., Borcsok Z., Tsalagkas D. Density optimization for the manufacturing of bark-based thermal insulation panels. IOP Conference Series: Earth and Environmental Science, 2019. DOI: 10.1088/1755-1315/307/1/012007.
  22. Tudor E. M., Dettendorfer A., Kain G., Barbu M. C., Reh R., Kristak L. Sound-Absorption Coefficient of Bark-Based Insulation Panels. Polymers, 2020, vol. 12, no. 5, 1012. DOI: 10.3390/polym12051012.
  23. Chi C., Chen W., Guo M., Weng M., Yan G., Shen X. Law and features of TVOC and Formaldehyde pollution in urban indoor air. Atmospheric Environment, 2016, vol. 132, pp. 85–90. DOI: 10.1016/j.atmosenv.2016.02.043.
  24. Plaisance H., Blondel A., Desauziers V., Mocho P. Field investigation on the removal of formaldehyde in indoor air. Building and Environment, 2013, vol. 70, pp. 277–283. DOI: 10.1016/j.buildenv.2013.08.032.
  25. Funaki M., Fukuta H., Nishizawa M., Yamagishi T. Adsorption of formaldehyde on the Bark of Larix kaempferi. Natural Medicines, 2005, vol. 58, pp. 104–108. Available at: https://dl.ndl.go.jp/view/download/digidepo_10760181_po_ART0009809557.pdf?contentNo=1&alternativeNo= (accessed 10.10.2022).
  26. Takano T., Murakami T., Kamitakahara H., Nakatsubo F. Formaldehyde adsorption by karamatsu (Larix leptolepis) bark. Wood Science, 2008, vol. 54, no. 4, pp. 332–336. DOI: 10.1007/s10086-007-0940-6.
  27. Bohm P., Wolterbeek H., Verburg T., Musilek L. The use of tree bark for environmental pollution monitoring in the Czech Republic. Environmental Pollution, 1998, vol. 102, issues 2-3, pp. 243–250. DOI: 10.1016/S0269-7491(98)00082-7.
  28. Saarela K.-E., Harju L., Rajander J., Lill J.-O., Heselius S.-J., Lindroos A. Elemental analyses of pine bark and wood in an environmental study. Science of The Total Environment, 2005, vol. 343, issues 1-3, pp. 231–241. DOI: 10.1016/j.scitotenv.2004.09.043.
  29. Mandiwana K. L., Resane T., Panichev N., Ngobeni P. The application of tree bark as bio-indicator for the assessment of Cr(VI) in air pollution. Journal of Hazardous Materials, 2004, vol. 137, issue 2, pp. 1241–1245. DOI: 10.1016/j.jhazmat.2006.04.015.
  30. Pasztory Z., Mohacsine I., Gorbacheva G., Borcsok Z. The utilization of tree bark. Bioresources, 2016, vol. 11, issue 3, pp. 7859–7888. DOI: 10.15376/biores.11.3.Pasztory.
  31. Berlizov A. N., Blum O. B., Filby R. H., Malyuk I. A., Tryshyn V. V. Testing applicability of black poplar (Populus nigra L.) bark to heavy metal air pollution monitoring in urban and industrial regions. Science of The Total Environment, 2007, vol. 372, issues 2-3, pp. 693–706. DOI: 10.1016/j.scitotenv.2006.10.029.
  32. Bianchi S. Extraction and characterization of bark tannins from domestic softwood species. PhD Thesis, Universtiy of Hamburg, 2017. Available at: https://d-nb.info/1126115967/34 (accessed 10.10.2022).
  33. Hathway D. E. Oak-bark tannins. Biochemical Journal, 1958, vol. 70, issue 2, pp. 34–42. DOI: 10.1042/bj0700034.
  34. Kurth E. F. The Chemical Composition of Barks. Chemical Reviews, 1947, vol. 40, issue 1, pp. 33–49. DOI: 10.1021/cr60125a003.
  35. Narasimhachari N., Rudloff E. V. The Chemical Composition of the wood and bark extractives of Juniperus Horizontalis Moench. Canadian Journal of Chemistry, 1961, vol. 39, issue 12, pp. 2572–2581. DOI: 10.1139/v61-339.
  36. Navarrete P., Pizzi A., Bertaud F., Rigolet S. Condensed tannin reactivity inhibition by internal rearrangements: Detection by CP-MAS 13C NMR. Maderas. Ciencia y Tecnología, 2011, vol. 13, no. 1, pp. 59–68. DOI: 10.4067/S0718-221X2011000100006.
  37. Porter L. J. Structure and Chemical Properties of the Condensed Tannins. Plant Polyphenols, 1992, vol. 59, pp. 245–258. DOI: 10.1007/978-1-4615-3476-1_14.
  38. Schofield P., Mbugua D., Pell A. Analysis of condensed tannins: a review. Animal Feed Science and Technology, 2001, vol. 91, issues 1-2, pp. 21–40. DOI: 10.1016/S0377-8401(01)00228-0.
  39. Pizzi A. Tannin-based adhesives: new theoretical aspects. International Journal of Adhesion and Adhesives, 1980, vol. 1, issue 1, pp. 13–16. DOI: 10.1016/0143-7496(80)90028-7.
  40. Pizzi A. Natural Phenolic Adhesives I. Handbook of Adhesive Technology. 2nd Edition. New York, Marcel Dekker, 2003. DOI: 10.1201/9780203912225.ch27.
  41. Pásztory Z., Halász K., Börcsök Z. Formaldehyde Adsorption–Desorption of Poplar Bark. Bulletin of Environmental Contamination and Toxicology, 2019, vol. 103, issue 5, pp. 745–749. DOI: 10.1007/s00128-019-02718-7.
  42. Nemli G., Gursel C. Effects of Mimosa Bark Usage on Some Properties of Particleboard. Turkish Journal of Agriculture and Forestry, 2005, vol. 29, no. 3, pp. 227–230. Available at: https://journals.tubitak.gov.tr/agriculture/vol29/iss3/10 (accessed 10.10.2022).
  43. Medved S., Gajsek U., Tudor E. M., Barbu M. C. Efficiency of bark for reduction of formaldehyde emission from particleboards. Wood research, 2019, vol. 64, no. 2, pp. 307–315. Available at: http://www.woodresearch.sk/wr/201902/12.pdf (accessed 10.10.2022).
  44. Harkin J. M., Rowe J. W. Bark and its possible uses. Forest Service US. Department of Agriculture Forest Service, 1971. Research note FPL, 091, 56 p. Available at: https://www.fs.usda.gov/research/treesearch/5760 (accessed 10.10.2022).
  45. Gupta G., Yan N., Feng M. Effects of Pressing Temperature and Particle Size on Bark Board Properties Made from Beetle-Infested Lodgepole Pine (Pinus contorta) Barks. Forest Products Journal, 2011, vol. 61, issue 6, pp. 478–488. DOI: 10.13073/0015-7473-61.6.478.
  46. Turlay I. V., Chernushevich G. A., Peretrukhin V. V., Tereshko V. V. Radioactive contamination of wood in the Chernobyl zone. Izvestiya VUZov. Lesnoy zhurnal [University news. Forest journal], 2001, no. 2, pp. 25–28. Available at: https://cyberleninka.ru/article/n/radioaktivnoe-zagryaznenie-drevesiny-chernobylskoy-zony (accessed 13.10.2022) (In Russian).
  47. Fedosenko I. G. Application of tree bark in the production of insulating and structural plates. Trudy BGTU [Proceedings of BSTU], issue 1, Forestry, Nature Management and Processing of Renewable Resources, 2020, no. 2, pp. 239–243 (In Russian).
  48. Steinhauser G., Steinhauser V. A Simple and Rapid Method for Reducing Radiocesium Concentrations in Wild Mushrooms (Cantharellus and Boletus) in the Course of Cooking. Journal of Food Protection, 2016, vol. 79, issue 11, pp. 1995–1999. DOI: 10.4315/0362-028X.JFP-16-236.
  49. Yoshida M., Kaino H., Shidara S., Chiku K., Hachinohi M., Hamamatsu S. Elution of Radioactive Cesium from Tofu by Water Soaking. Food Safety, 2020, vol. 8, issue 3, pp. 55–58. DOI: 10.14252/foodsafetyfscj.D-20-00011.
  50. Varfolomeeva K. V. Boiling dried mushrooms as an effective means of reducing the concentration of 137 Cs. Radiatsionnaya gigiyena [Radiation hygiene], 2019, no. 12 (4), pp. 82–88. DOI: 10.21514/1998-426X-2019-12-4-82-88 (In Russian).
  51. Zimmer B., Wegener G. Stoff-und Energieflüsse vom Forst zum Sägewerk. Holz als Roh-und Werkstoff, 1996, no. 54, pp. 217–223. DOI: 10.1007/s001070050171.
  52. Pastory Z., Gorbacheva G. A., Sanaev V. G., Mohacine I. R., Borchok Z. Status and prospects for the use of tree bark. Vestnik MGUL. Lesnoy vestnik [Bulletin of MSFU], 2020, no. 5, pp. 74–88. Available at: https://cyberleninka.ru/article/n/sostoyanie-i-perspektivy-ispolzovaniya-drevesnoy-kory (accessed 16.10.2022) (In Russian).
  53. Gil L. Cork Composites: A Review. Materials, 2009, vol. 2, issue 3, pp. 776–789. DOI: 10.3390/ma2030776.
20.10.2022