STUDE OF EFFECT OF DEFLOCCULANTS ON THE RHEOLOGICAL BEHAVIOR OF α-ALUMINA SUSPENSIONS

UDC 544.77:546.62-31

  • Trubitsyn Mikhail Aleksandrovich − PhD (Engineering), Professor, the Department of General Chemistry, Institute of Pharmacy, Chemistry and Biology. Belgorod National Research University (85, Pobedy str., 308015, Belgorod, Russian Federation). Е-mail: troubitsin@bsu.edu.ru

  • Furda Lyubov’ Vladimirovna − PhD (Chemistry), Assistant Professor, the Department of General Chemistry, Institute of Pharmacy, Chemistry and Biology. Belgorod National Research University (85, Pobedy str., 308015, Belgorod, Russian Federation). Е-mail: furda@bsu.edu.ru

  • Volovicheva Natal’ya Aleksandrovna − PhD (Engineering), Assistant Professor, the Department of General Chemistry, Institute of Pharmacy, Chemistry and Biology. Belgorod National Research University (85, Pobedy str., 308015, Belgorod, Russian Federation). Е-mail: volovicheva@bsu.edu.ru

  • Lisnyak Viktoriya Vladimirovna − PhD student, technician, the Department of General Chemistry, Institute of Pharmacy, Chemistry and Biology. Belgorod National Research University (85, Pobedy str., 308015, Belgorod, Russian Federation). E-mail: lisnyak@bsu.edu.ru

Key words: α-aluminum oxide, suspensions, flowability, rheology, deflocculants.

For citation: Trubitsyn M. A., Furda L. V., Volovicheva N. A., Lisnyak V. V. Study of effect of deflocculants on the reological behavior of α-alumina suspensions. Proceedings of BSTU, issue 2, Chemical Engineering, Biotechnologies, Geoecology, 2022, no. 2 (259), pp. 165–174 (In Russian). DOI: https://doi.org/10.52065/2520-2669-2022-259-2-165-174.

Abstract

Comparative studies have been carried out on the effectiveness of various commercially available polyphosphates and polycarboxylate esters used as deflocculants in aqueous suspensions of reactive alumina. Finely dispersed alpha-alumina is prepared by dry grinding of calcined alumina. The resulting powder has a median particle diameter of D50 = 2.4 microns, S (BET) = 1.4 m2 /g. The dosage of polycarboxylate esters in suspensions was 0.17 and 0.34 wt.%, and polyphosphates – 0.10 and 0.25 wt.% by weight of reactive alumina powder. All defloculated suspensions in the shear rate range of less than 20 s–1 can be characterized as non-Newtonian structured liquids having a certain yield strength of τ0. With an increase in the shear rate above 20 s–1, the values of the apparent viscosity of all the suspensions studied decrease significantly, and the dependences of τ = f(γ) become rectilinear. The measured flow curves τ = f(γ) were satisfactorily approximated by the Casson model. The calculated values of the yield strength τ0 allowed us to give a comparative assessment of the degree of flocculation of suspensions with additives of various dispersants. The amount of shut-in water significantly affects the fluidity of reactive alumina suspensions. For a sample defloculated with an additive based on polycarboxylate ether Sinteflou DM50 0.17 wt.%, a decrease in the solid phase content from 84 to 78% increases the fluidity of the suspension by about 4 times.

References

  1. Penn S., Alford N. Ceramic dielectrics for microwave applications. Handbook of low and high dielectric constant materials and their applications. San Diego: Academic Press, 1999, vol. 2, pp. 493‒532. DOI: 10.1016/B978-012513905-2/50024-8.
  2. Abyzov A. M. Aluminum oxide and aluminum oxide ceramics (Review). Part 1. Properties of Al2O3 and industrial production of dispersed Al2O3. Novyye ogneupory [New refractories], 2019, no. 1, pp. 16–23 (In Russian).
  3. Pletnev P. M., Nepochatov Y. K., Malikova E. V., Bogayev A. A. Technology for obtaining corundum armor ceramics modified with complex additives. Izvestiya Tomskogo politekhnicheskogo universiteta [Proceedings of Tomsk Polytechnic University], 2015, vol. 326, no. 3, pp. 40–49 (In Russian).
  4. Aung Chzho Moye, Lukin E. S., Popova N. A., Provotorov D. A. The effect of the additive content in the Al2O3 ‒ MgO ‒ MnO system and the firing temperature on the sintering of composite ceramics based on electrofused corundum. Novyye ogneupory [New refractories], 2018, no. 7, pp. 20–23 (In Russian).
  5. Ghose S., Saigal C., Maldhure A., Das S. K. Еffect of reactive alumina on the physico-mechanical properties of refractory castable. Transactions of the Indian Ceramic Society, 2013, vol. 72, no. 2, рр. 113‒118. DOI: 10.1080/0371750X.2013.794024.
  6. Hsu Y. F., Wang S. F., Cheng T. W. Effects of additives on the densification and microstructural evolution of fine θ-Al2O3 powder. Materials Science and Engineering, 2003, vol. 362, pp. 300‒308. DOI: 10.1016/S0921-5093(03)00614-2.
  7. Martynenko V. V., Primachenko V. V., Krivoruchko P. P., Mishneva YU. E., Kushchenko K. I., Krakhmal’ Y. A., Sinyukova E. I., Karyakina E. L. Influence of the type of alumina on the properties of slips and samples of particularly dense corundum ceramics. Sbornik nauchnykh trudov PAO “UkrNII ogneuporov imeni A. S. Berezhnogo” [Collection of scientific papers of PJSC “UkrNII refractories named after A. S. Berezhny”], 2015, no. 115, pp. 46–55 (In Russian).
  8. Kaynarskiy I. S., Degtyareva E. V., Orlova I. G. Korundovyye ogneupory i keramika [Corundum refractories and ceramics]. Moscow, Metallurgiya Publ., 1981. 267 p. (In Russian).
  9. Bulejko P., Sulekova N., Vlasak J., Tuunila R., Kinnarinen T., Sverak T. Ultrafine wet grinding of corundum in the presence of triethanolamine. Powder Technology, 2022, vol. 395, рр. 556–561. DOI: 10.1016/j.powtec.2021.09.079.
  10. Balkevich V. L. Tekhnicheskaya keramika [Technical ceramics]. Moscow, Stroyizdat Publ., 1984. 256 p. (In Russian).
  11. Ramesh S., Siah L. F., Nor Azmah A. K. Sintering behaviour of slip-cast Al2O3-Y-TZP composites. Journal of Materials Science, 2000, vol. 35, рр. 5509–5515. DOI: 10.1023/A:1004837516291.
  12. Majic Renjo M., Lalic M., Curkovic L., Matijasic G. Die rheologischen Eigenschaften von wassrigen aluminiumoxid-suspensionen. Rheological properties of aqueous alumina suspensions. Materialwissenschaft und Werkstofftechnik, 2012, vol. 43, no. 11, pр. 979–983. DOI: 10.1002/mawe.201200844.
  13. Tallon C., Limacher M., Franks G.V. Effect of particle size on the shaping of ceramics by slip casting. Journal of the European Ceramic Society, 2010, vol. 30, рр. 2819–2826. DOI: 10.1016/j.jeurceramsoc.2010.03.019.
  14. Binner J. G. P., McDermott A. M. Rheological characterisation of ammonium polyacrylate dispersed, concentrated alumina suspensions. Ceramics International, 2006, vol. 32, рр. 803–810. DOI: 10.1016/j.ceramint.2005.06.004.
  15. Karimian H., Babaluo A. A. Effect of polymeric binder and dispersant on the stability of colloidal alumina suspensions. Iranian Polymer Journal, 2006, vol. 15, рр. 879–889.
  16. Boutenel F., Dusserre G., Aimableb A., Chartier T., Cutard T. Rheophysical study of dispersed alumina suspensions. Powder Technology, 2021, vol. 393, рр. 630–638. DOI: 10.1016/j.powtec.2021.08.016.
  17. Sever I., Zmak I., Curkovic L., Svageljstr Z. Stabilization of highly concentrated alumina suspensions by different dispersants. Transactions of Famena, 2018, vol. 42 no. 3, pp. 61–70. DOI: 10.21278/TOF.42304.
  18. Ohtsuka H., Mizutani H., Satoshi I., Asai K., Kiguchi T., Satone H., Mori T., Tsubaki J. Effects of sintering additives on dispersion properties of Al2O3 slurry containing polyacrylic acid dispersant. Journal of the European Ceramic Society, 2011, vol. 31, pp. 517–522. DOI: 10.1016/j.jeurceramsoc.2010.11.001.
  19. Martynenko V. V., Primachenko V. V., Mishneva Y. E., Kushchenko K. I., Krakhmal’ Y. A., Karyakina E. L. Study of rheological properties of alumina slips containing new dispersing and strengthening additives. Sbornik nauchnykh trudov PAO “UkrNII ogneuporov imeni A. S. Berezhnogo” [Collection of scientific papers of PJSC “UkrNII refractories named after A. S. Berezhny”], 2016, no. 116, pp. 98–109 (In Russian).
  20. Spataru M., Muntean M., Dumitrescu O. Stabilization of aqueous suspensions prepared from alumina and zircon powders. Volume: global roadmap for ceramics, ICC2 Proceedings. 2nd International congres on ceramics. Verona, Italy, 2008.
  21. Tomasika P., Schillingb C. H., Jankowiakc R., Kim J. The role of organic dispersants in aqueous alumina suspensions. Journal of the European Ceramic Society, 2003, vol. 23, pp. 913–919. DOI: 10.1016/S0955-2219(02)00204-2.
  22. Chou K., Lee L. Effect of dispersants on the rheological properties and slip casting of concentrated alumina slurry. Journal of the American Ceramic Society, 1989, vol. 72, no. 9, pр. 1622–1627. DOI: 10.1111/J.1151-2916.1989.TB06293.X
  23. Seyerl J. V. Use of polycarboxylate ethers to improve workability of castables. Materials Science, 2007, vol. 9, pр. 46–49.
  24. Li Y., Yang C., Zhang Y., Zheng J., Guo H., Lu M. Study on dispersion, adsorption and flow retaining behaviors of cement mortars with Tpeg-type polyether kind polycarboxylate superplasticizers. Construction and Building Materials, 2014, vol. 64, pp. 324–332. DOI: 10.1016/j.conbuildmat.2014.04.050.
  25. Trubitsyn M. A., Volovicheva N. A., Furda L. V., Skrypnikov N. S. Study of the effect of technological parameters on the granulometric characteristics of submicron aluminum oxide in α-form. Vestnik BGTU imeni V. G. Shukhova [Bulletin of BSTU named after V. G. Shukhov], 2021, vol. 6, no. 12, pp. 84–97. DOI: 0.34031/2071-7318-2021-6-12-84-97 (In Russian).
  26. Piani I., Papo A. Sodium tripolyphosphate and polyphosphate as dispersing agents for alumina suspensions: rheological characterization. Journal of Engineering, 2013, vol. 2013, pp. 1–4. DOI: 10.1155/2013/930832.
14.06.2022