BIOLOGICAL TREATMENT OF BREWERY WASTEWATER (OVERVIEW)

UDC 628.355

  • Lukashevich Stefania Olegovna – Master’s degree student, the Department of Biotechnology. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: stefani.lukashevich@gmail.com

  • Markevich Raisa Mikhailovna – PhD (Chemistry), Assistant Professor, the Department of Biotechnology. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: marami@tut.by

Key words: waste water, granulated activated sludge, brewery production, chemical oxygen demand, anaerobic-aerobic treatment method, UASB-reactor, SBR-reactor.

For citation: Lukashevich S. O., Markevich R. M. Biological treatment of brewery wastewater. Proceeding of BSTU, issue 2, Chemical Engineering, Biotechnologies, Geoecology, 2022, no. 1 (253), pp. 66–79 (In Russian). DOI: https://doi.org/10.52065/2520-2669-2022-253-1-66-79.

Abstract

This literature review considers methods and techniques for industrial wastewater treatment, particular for wastewater generating in beer processing. Beer production are one of the largest users of fresh water for processing needs and the resulting wastewater is characterized by high level of organic pollutants content and require higher attention for remediation before discharge to environment.

This paper aims to review methods of brewery wastewater treatment based on biological pollutants removal technology. The review focuses on some key issues: water consumption and wastewater generation, its quantity and composition, the environmental impact, traditional wastewater treatment methods as well as modern directions of development in this area.

It is described the main constructive features of various bioreactors, the underlying principles of their work. It is noted how efficiently these bioreactors can be utilized for treating brewery wastewater.

References

  1. Fillaudeau L., Blanpain-Avet P., Daufin G. Water, wastewater and waste management in brewing industries. Journal of Cleaner Production, 2006, vol. 14, pp. 463–471. DOI: 10.1016/j.jclepro.2005.01.0022.
  2. Huige N. J. Handbook of Brewing. Boca Raton, CRC Press Publ., 2006. 60 p.
  3. Brito A. G., Oliveira J. M., Peixoto J., Costa C. Brewery and Winery Wastewater Treatment: Some Focal Points of Design and Operation. Utilization of By-Products and Treatment of Waste in the Food Industry, 2007, pp. 109–131. DOI: 10.1007/978-0-387-35766-9_77.
  4. Feng X., Huang L., Zhang X., Liu Y. Water system integration of a brewhouse. Energy Conversion and Management, 2009, vol. 50, pp. 354–359. DOI: 10.1016/j.enconman.2005.11.0011.
  5. Gavrilenkov A. M., Zartsyna S. S., Zuyeva S. B. Ecologicheskaya bezopasnost’ pishchevykh proizvodstv [Ecological safety of food production]. Saint Petersburg, Giord Publ., 2006. 272 p. (In Russian).
  6. Kramareva T. N. Otsenka vozdeystviya na okruzhayushchuyu sredu predpriyatiу pishchevoу promyshlennosti [Assessment of environmental impact of food industry enterprises]. Moscow, Sam poligrafist Publ., 2015. 118 p. (In Russian).
  7. Qin R. The characteristics of beer industrial wastewater and its influence on the environment. Earth and Environmental Sciences: 2nd International Symposium on Resource Exploration and Environmental Science Series, 2018, vol. 170, no. 3, pp. 1–5. DOI: 10.1088/1755-1315/170/3/032068.
  8. Shao X., Peng D., Teng Z., Ju X. Treatment of brewery wastewater using anaerobic sequencing batch reactor (ASBR). Bioresource Technology, 2008, vol. 99, pp. 3182–3186. DOI: 10.1016/j.biortech.2007.05.050.
  9. Brewery wastewater facilities. To designers. Kompaniya Argel [Argel company], 2013. Available at: https://www.vo-da.ru/articles/ochistnye-soorujeniya-pivzavodov/sostav-i-harakteristiki (accessed 05.09.2021).
  10. Palmer J. J., Kaminski C. Water. A comprehensive study for brewers. Colorado, A Division of the Brewers Association Publ., 2013. 315 p.
  11. Ivanchenko O. B., Khabibulin O. B. Formation pathways and toxic properties of brewery wastewater. Ecologicheskaya biotekhnologiya [Environmental biotechnology], 2015, pp. 433–436 (In Russian).
  12. Feng Y., Logan B., Wang X., Lee H. Brewery wastewater treatment using air-cathode microbial fuel cells. Environmental Biotechnology, 2008, vol. 78, pp. 873–880. DOI: 10.1007/s00253-008-1360-2.
  13. Werkneh A. A., Osunkunle A., Beyene H. D. Recent advances in brewery wastewater treatment; approaches for water reuse and energy recovery. Environmental Sustainability, 2019, vol. 2, pp. 199–209. DOI: 10.1007/s42398-019-00056-22.
  14. Doubla A., Laminsi S., Nzali S., Njoyim E. Organic pollutants abatement and biodecontamination of brewery effluents by a non-thermal quenched plasma at atmospheric pressure. Chemosphere, 2007, vol. 69, pp. 332–337. DOI: 10.1016/j.chemosphere.2007.04.0077.
  15. Ince B. K., Ince O., Sallis P., Anderson J. K. Inert COD production in a membrane anaerobic reactor treating brewery wastewater. Water Research, 2000, vol. 34, pp. 3943–3948. DOI: 10.1016/S0043-1354(00)00170-6.
  16. Alvarado-LassmanA., García-Alvarado M. A., Rustrian E., Rodriguez-Jimenes G. Brewery wastewater treatment using anaerobic inverse fluidized bed reactors. Bioresource Technology, 2008, vol. 99, pp. 3009–3015. DOI: 10.1016/j.biortech.2007.06.0222.
  17. Parawira W., Zvauya R., Kudita I., Nyandoroh N. G. A study of industrial anaerobic treatment of opaque beer brewery wastewater in a tropical climate using a full-scale UASB reactor seeded with activated sludge. Process Biochemistry, 2005, vol. 40, pp. 593–599. DOI: 10.1016/j.procbio.2004.01.036.
  18. Wen Q., Wu Y., Zhao L., Sun Q. Production of electricity from the treatment of continuous brewery wastewater using a microbial fuel cell. Fuel, 2010, vol. 89, no. 7, pp. 1381–1385. DOI: 10.1016/j.fuel.2009.11.004.
  19. Janczukowicz W., Mielcarek A., Rodziewicz J., Ostrowska K. Charakterystyka jakościowa ścieków powstających w browarach i słodowniach. Rocznik Ochrona Środowiska, 2013, vol. 15, pp. 729–748.
  20. Simate G. S., Cluett J., Iyuke S. E., Musapatika E. T. The treatment of brewery wastewater for reuse: State of the art. Desalination, 2011, vol. 273, pp. 235–247. DOI: 10.1016/j.desal.2011.02.035.
  21. Driessen W., Vereijken T. Recent developments in biological treatment of brewery effluent. The Institute and Guild of Brewing Convention. Livingstone, Zambia, March 2–7, 2003. 10 p.
  22. Danilovich D. A. A future that has already arrived: granulated activated sludge technology. NDT [BAT], 2017, no. 3, pp. 10–11 (In Russian).
  23. Biogas Production in Brewerie. BioThane. Available at: http://www.biothane.com/en/articles/14856.html (accessed 15.10.2021).
  24. Baloch M. I., Akunna J. C., Collier P. J. The performance of a phase separated granular bed bioreactor treating brewery wastewater. Bioresource Technology, 2007, vol. 98, no. 9, pp. 1849–1855. DOI: 10.1016/j.biortech.2006.06.014.
  25. Ochieng A. A. Brewery wastewater treatment in a fluidised bed bioreactor. Journal of Hazardous Materials, 2002, vol. 90, pp. 311–321. DOI: 10.1016/s0304-3894(01)00373-9.
  26. Sequencing Batch Reactors (SBR). EthicsTM. Available at: http://www.ethicsinfinity.com/EthicsProduct-sequencing-batch-reactors-sbr (accessed 15.10.2021).
  27. Arantes M. K., Alves H., Sequinel R., Silva E. Treatment of brewery wastewater and its use for biological production of methane and hydrogen. International journal of hydrogen energy, 2017, vol. 42, pp. 26243–26256. DOI: 10.1016/j.ijhydene.2017.08.206.
  28. Parawira W., Zvauya R., Kudita I., Nyandoroh M. G. A study of industrial anaerobic treatment of opaque beer brewery wastewater in a tropical climate using a full-scale UASB reactor seeded with activated sludge. Process Biochemistry, 2005, vol. 40, pp. 593–599. DOI: 10.1016/j.procbio.2004.01.036.
  29. Takahashi M., Yamaguchi T., Kuramoto Y., Nagano A. Performance of a pilot-scale sewage treatment: an up-flow anaerobic sludge blanket (UASB) and a down-fow hanging sponge (DHS) reactors combined system by sulfur-redox reaction process under low-temperature conditions. Bioresource Technology, 2011, vol. 102, no. 2, pp. 753–757. DOI: 10.1016/j.biortech.2010.08.081.
  30. Diaz-Elsayed N., Rezaei N., Guo T., Mohebbi S. Wastewater-based resource recovery technologies across scale. Resource Conservation Recycling, 2019, vol. 145, pp. 94–112. DOI: 10.1016/j.resconrec.2018.12.035.
  31. Baloch M. I., Akunna J. C., Collier P. J. Carbon and nitrogen removal in a granular bed baffled reactor. Environmental Technology, 2010, vol. 27, pp. 201–208. DOI: 10.1080/09593332708618634.
  32. Seung J. L. Applicability and trends of anaerobic granular sludge treatment processes. Biomass and Bioenergy, 2014, vol. 60, pp. 189–202. DOI: 10.1016/j.biombioe.2013.11.011.
  33. Chen C., Ren N.-Q., Wang A., Yu Z. Simultaneous biological removal of sulfur, nitrogen and carbon using EGSB reactor. Applied microbiology and biotechnology, 2008, vol. 78, pp. 1057–1063. DOI:10.1007/s00253-008-1396-3.
  34. Chen T., Zheng P., Tang C., Wang S. Perfomance of ANAMMOX-EGSB reactor. Desalination, 2011, vol. 278, no. 1, pp. 281–287. DOI:10.1016/j.desal.2011.05.038.
  35. Baloch M. I., Akunna J. C. Granular bed baffled reactor (GraBBR): Solution to a two-phase anaerobic digestion system. Journal of Environmental Engineering (ASCE), 2003, vol. 129, pp. 1015–1021. DOI: 10.1061/(ASCE)0733-9372(2003)129:11(1015).
  36. Andalib M., Elbeshbishy E., Nizara M., Hisham H. Performance of an anaerobic fluidized bed bioreactor (AnFBR) for digestion of primary municipal wastewater treatment biosolids and bioethanol thin stillage. Renewable Energy, 2014, vol. 71, pp. 276–285. DOI: 10.1016/j.renene.2014.05.039.
  37. Wang S., Liu X., Gong W., Gao B. Aerobic granulation with brewery wastewater in a sequencing batch reactor. Bioresource Technology, 2006, vol. 98, no. 11, pp. 2142–2147. DOI: 10.1016/j.biortech.2006.08.018.
  38. Stes H., Caluwe M., Aerts S., Dobbeleers T. Formation of aerobic granular sludge and the influence of the pH on sludge characteristics in a SBR fed with brewery/bottling plant wastewater. Water Science and Technology, 2018, vol. 77, no. 9, pp. 132–143. DOI: 10.2166/wst.2018.132.
  39. Corsino S. F., Biase A., Devlin T., Munz G., Torregrossa G. Effect of extended famine conditions on aerobic granular sludge stability in the treatment of brewery wastewater. Bioresource Technology, 2017, vol. 227, pp. 150–157. DOI: 10.1016/j.biortech.2016.12.026.
  40. Biase A., Corsino S.F., Devlin T., Munz G., Torregrossa G. Aerobic granular sludge treating anaerobically pretreated brewery wastewater at different loading rates.Water Science and Technology, 2020, vol. 12, pp. 2295–2298. DOI: 10.2175/193864718825137115.
  41. Huang J., Xu L., Guo Y., Liu D., Chen S. Intermittent aeration improving activated granular sludge granulation for nitrogen and phosphorus removal from domestic wastewater. Bioresourse Technology Report, 2021, vol. 15, pp. 1–11. DOI: 10.1016/j.biteb.2021.100739.
  42. Bakar B. F., Shabangu K., Chetty M. Brewery wastewater treatment using laboratory scale aerobic sequencing batch reactor. South African Journal of Chemical Engineering, 2017, vol. 24, no. 1, pp. 128–134.
  43. Zheng S., Lu H., Zhang G. The recent development of the aerobic granular sludge for industrial wastewater treatment. Environmental Technology Reviews, 2020, vol. 9, no. 1, pp. 55–66. DOI: 10.1080/21622515.2020.1732479.
  44. Sarma S. J., Tay J. H. Aerobic Granulation for a Future Wastewater Treatment Technology: Challenges Ahead. Environmental Science. Water research and technology, 2017, vol. 4, pp. 9–15. DOI: 10.1039/C7EW00148G.
  45. Campo R., Vassalo A., Rabbeni G., Arancio W. Reactivation of aerobic granular sludge for the treatment of industrial shipboard slop wastewater: Effects of long-term storage on granules structure, biofilm activity and microbial community. Journal of Water Process Engineering, 2021, vol. 42, pp. 1–11. DOI: 10.1016/j.jwpe.2021.102101.
  46. Sheng J. P., Yu H. Q., Li X. Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems. Biotechnol. Adv., 2010, vol. 28, no. 6, pp. 882–894. DOI: 10.1016/j.biotechadv.2010.08.001.
  47. Harnirrudin N. A., Awang N. A., Zaidi N. S., Said M. A. M. Effects of wastewater type on stability and operating conditions control strategy in relation to the formation of aerobic granular sludge. Water Science and Technology, 2021, pp. 1–18. DOI: 10.2166/wst.2021.415.
  48. Fan X. Y., Gao J., Pan K.-L., Li D.-C. Shifts in bacterial community composition and abundance of nitrifiers during aerobic granulation in two nitrifying sequencing batch reactors. Bioresourse Technology, 2018, vol. 251, pp. 99–107. DOI: 10.1016/j.biortech.2017.12.038.
  49. Lu H., Zhang G., Peng M., Li B. Brewery wastewater treatment and resource recovery through long term continuous-mode operation in pilot photosynthetic bacteria membrane bioreactor. Scientific Total Environment, 2019, vol. 646, pp. 196–205. DOI: 10.1016/j.scitotenv.2018.07.268.
  50. Braeken L., Bruggen B., Vandecasteele T. Regeneration of brewery wastewater using nanofltration. Water Resourse and Technology, 2004, vol. 38, no. 13, pp. 3075–3082. DOI: 10.1016/j.watres.2004.03.028.
  51. Zahrim A. Y., Tizaoui C., Hilai N. Coagulation with polymers for nanofltration pre-treatment of highly concentrated dyes: a rewiew. Desalination, 2011, vol. 266, pp. 1–16. DOI: 10.1016/j.desal.2010.08.012.
  52. Olajire A. A. The brewing industry and environmental challenges. Journal of Cleaner Production, 2012, vol. 30, pp. 313–320. DOI: 10.1016/j.jclepro.2012.03.003.
  53. Pandey P. Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Applied Energy, 2016, vol. 168, pp. 706–723. DOI: 10.1016/j.apenergy.2016.01.056.
15.11.2021