DEVELOPMENT OF CALCIUM PHOSPHATE COMPOSITIONS FOR 3D PRINTING OF CERAMICS

UDC 666.6

  • Shymanskaya Hanna Mikalaeuna – PhD (Engineering), Assistant Lecturer, the Department of Glass and Ceramics Technology. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: shimanskaya@belstu.by

  • Popov Rostislav Yurʼevich – PhD (Engineering), Assistant Professor, the Department of Glass and Ceramics Technology. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: rospopov@mail.ru

  • Pantsialeyenka Fedor Ivanovich – DSc (Engineering), Professor, the Department of Powder Metallurgy, Welding and Materials Technology, NAS Corresponding Member, Honoured Scientist of the Republic of Belarus. Belarusian National Technical University (24, build. 7, Ya. Kolasa str., 220013, Minsk, Republic of Belarus). E-mail: panteleenkofi@mail.ru

  • Podsosonnaya Alexandra Dmitrievna – Masterʼs degree student, the Department of Glass and Ceramics Technology. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: pod.sosna@inbox.ru

  • Baihazin Dzmitry Alyaksandravich – student. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: baigazin.dima@mail.ru

  • Pospelov Andrey Vladimirovich – Junior Researcher, the Center for Physical and Chemical Research Methods. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: Andrei29088@mail.ru

Key words: liquid-phase synthesis, hydroxyapatite, 3D printing, dynamic viscosity, structure.

For citation: Shymanskaya H. M., Popov R. Yu., Pantsialeyenka F. I., Podsosonnaya A. D., Baihazin D. A., Pospelov A. V. Development of calcium phosphate compositions for 3D printing of ceramics. Proceedings of BSTU, issue 2, Chemical Engineering, Biotechnologies, Geoecology, 2021, no. 2 (247), pp. 187–198 (In Russian). DOI: https://doi.org/10.52065/2520-2669-2021-247-2-187-198.

Abstract

Creation of personalized structures for bone tissue engineering based on calcium phosphates using 3D printing methods is one of the promising directions in the development of additive technologies. In this work, a comprehensive study of the influence of the liquid-phase synthesis parameters of hydroxyapatite (pH of the reaction medium, temperature, the duration of holding the precipitate in the mother liquor, subjecting of the mother liquor with the precipitate to microwave irradiation) on the phase composition and particle size distribution of the obtained powder, features of it structure have been carried out. As a result, the optimal conditions have been chosen for the synthesis of hydroxyapatite: pH 10, temperature 60°C, subjecting of the mother liquor with the precipitate to microwave irradiation (700 W, 30 min). For the molding of ceramics the design of a 3D printer have been developed and the experimental 3D printer have been assembled. The technological properties of ceramic masses suitable for 3D printing have been determined: dynamic viscosity – 20,000–60,000 mPa·s; pH 7–8; moisture content – 54– 60 wt. %, and when using binding additives – 70 wt. %. Using differential scanning calorimetry, the temperature-time firing parameters of ceramics on the base of synthesized hydroxyapatite have been determined. The relationship between the composition of ceramics, technological parameters of production, structural features and physico-chemical properties of calcium phosphate materials has been revealed.

References

  1. Barinov S. M., Komlev V. S. Biokeramika na osnove fosfatov kalʼtsiya [Calcium phosphate based bioceramics]. Moscow, Nauka Publ., 2005. 204 p.
  2. Balakin A. V., Smelov V. G., Chempinskiy L. A. Additive technology application details of combustion. Vestnik SGAU [Bulletin of Samara University], 2012, no. 3 (34), pp. 47–52 (In Russian).
  3. Amirthalingam N., Deivarajan T., Paramasivam M. Mechano chemical synthesis of hydroxyapatite using dolomite. Materials Letters, 2019, vol. 254, pp. 379–382. DOI: 10.1016/j.matlet.2019.07.118.
  4. Sinyaev V. A., Levchenko L. V., Shustikova E. S., Karzhaubaeva R. A., Gaysina G. D. Precipitated calcium phosphatesilicates and their dehydration in air at room temperature. Russian Journal of Applied Chemistry, 2009, vol. 82, no. 5, pp. 789–793. DOI: 10.1134/S1070427209050073.
  5. Miculescu F., Mocanu A.-C., Dascălu C. A., Maidaniuc A., Batalu D., Berbecaru A., Voicu S. I., Miculescu M., Thakur V. K., Ciocan L. T. Facile synthesis and characterization of hydroxyapatite particles for high value nanocomposites and biomaterials. Vacuum, 2017, vol. 146, pp. 614–622. DOI: 10.1016/j.vacuum.2017.06.008.
  6. Bogdanova E. A., Sabirzyanov N. A. Synthesis and study of nanosized biomaterials based on hydroxyapatite. Nanosystems: physics, chemistry, mathematics, 2014, no. 5 (4), pp. 590–596.
  7. Longinova N. M., Kozyreva N. A., Lipochkin S. V. Physocochemical properties of hydroxylapatite produced by precipitation. Glass and Ceramics, 2000, vol. 57, issue 5–6, pp. 172–173. DOI: 10.1007/BF02681268.
  8. Suvorova E. I., Polyak L. E., Komarov V. F., Melikhov I. V. Study of synthetic hydroxyapatite by the method of high-resolution transmission electron microscopy: morphology and growth direction. Crystallography Reports, 2000, vol. 45, issue 5, pp. 857–861. DOI: 10.1134/1.1312936.
  9. Tikhonov A. A., Yevdokimov P. V., Putlyayev V. I., Safronova T. V., Filippov Ya. Yu. On architecture of osteoconductive bioceramic implants. Material Science, 2018, no. 8, pp. 43–48. DOI: 10.31044/1684-579X-2018-0-8-43-48.
  10. Liao Ch.-J., Lin F.-H., Chen K.-Sh., Sun J.-Sh. Thermal decomposition of hydroxyapatite in air atmosphere. Ceramic International, 1999, vol. 20, pp. 1807–1813. DOI: 10.1016/s0142-9612(99)00076-9.
  11. Safronova T. V., Shekhirev M. A., Putlyaev V. I., Tretʼyakov Yu. D. Hydroxyapatite-based ceramic materials prepared using solutions of different concentrations. Neorganicheskiye materialy [Inorganic Materials], 2007, no. 8, pp. 1005–1014 (In Russian).
  12. Vlasov A. S., Ludanova A. S. Effect of the parameters of synthesis on the properties of hydroxyapatite. Glass and Ceramics, 1994, vol. 51, issue 7–8, pp. 261–262. DOI: 10.1007/BF00680662.
  13. Kulyashova K. S., Sharkeev Yu. P. Obtaining synthetic hydroxyapatite for the formation of biocoatings on implants for medical purposes. Khimiya v interesakh ustoychivogo razvitiya [Chemistry for Sustainable Development], 2011, no. 19, pp. 447–453 (In Russian).
  14. Goloshchapov D. L., Kashkarov V. M., Rumyantseva N. A., Seredin P. V., Lenʼshin A. S., Agapov B. L., Domashevskaya E. P. Synthesis of nanocrystalline hydroxyapatite by the precipitation process using natural
    source. Kondensirovannyye sredy i mezhfaznyye granitsy [Condensed matter and interphases], 2011, vol. 13, no. 4, p. 427–441 (In Russian).
  15. Jyotsna P., Vijayakumar P. Synthesis and characterization of hydroxyapatite nanoparticles and their cytotoxic effect on a fish vertebra derived cell line. Biocatalysis and Agricultural Biotechnology, 2020, vol. 25. DOI: 10.1016/j.bcab.2020.101612.
  16. Dorozhkin S. V. A Novel environmentally friendly process for the fabrication of calcium phosphate bioceramics. Inorganic Materials, 2008, vol. 44, issue 2, pp. 207–210. DOI: 10.1134/S0020168508020234.
  17. Komlevel V. S., Barinov S. M. Porous hydroxyapatite ceramics of bimodal poresize distribution. J. of M. Scientists, 2002., vol. 13, pp. 295–299. DOI: 10.1023/a:1014015002331.
  18. Safronova T. V., Kazakova G. K., Evdokimov P. V., Shatalova T. B., Knotʼko A. V., Korotkova A. V., Putlyaev V. I. Ceramics based on calcium phosphate powder synthesized from calcium saccharate and ammonium hydrogen phosphate. Materialovedeniye [Materials Science], 2016, no. 3, pp. 43–48 (In Russian).
  19. Safronova T. V., Putlyaev V. I., Kazakova G. K., Korneichuk S. A. Biphase CaO-P2O5 ceramic based on powder synthesized from calcium acetate and ammonium hydrophosphate. Steklo i keramika [Glass and ceramics], 2013, no. 2, pp. 44–31 (In Russian).
  20. Safronova T. V., Putlyaev V. I., Andreev M. D., Filippov Ya. Yu., Knotʼko A. V., Shatalova T. B., Evdokimov P. V. Synthesis of calcium phosphate powder from calcium lactate and ammonium hydrogen phosphate for the fabrication of bioceramics. Neorganicheskiye materialy [Inorganic Materials], 2017, vol. 53, no. 8, pp. 859–868 (In Russian).
  21. Ezhova Zh. A., Koval’ E. M., Zakharov N. A., Kalinnikov V. T. Synthesis and physicochemical characterization of carboxymethylcellulose-containing calcium hydroxylapatite. Russian Journal of Inorganic Chemistry, 2006, vol. 51, issue 2, pp. 332–336. DOI: 10.1134/S0036023606020239.
  22. Qian G., Liu W., Zheng L., Liu L. Facile syntheses of three-dimensional porous hydroxyapatite using carboxymethylcellulose as a template. Results in Physics, 2017, no. 7, pp. 1623–1627. DOI: 10.1016/j.rinp.2017.04.033.
  23. Chena R., Shen J. The synthesis of hydroxyapatite crystals with various morphologies via the solvothermal method using double surfactants. Materials Letters, 2020, vol. 259. DOI: 10.1016/j.matlet.2019.126881.
  24. Karakatenko E. Yu., Khayrullin A. I., Ivanov P. I., Koroleva M. Yu. Synthesys hydroxyapatite nanostructures with high surface area. Uspekhi v khimii i khimicheskoy tekhnologii [Advances in chemistry and chemical technology], 2017, vol. 31, no. 13, pp. 34–36 (In Russian).
  25. Fadeeva E. Yu., Letkin E. A., Koroleva M. Yu. Synthesis of hydroxyapatite nanoparticles stabilized by Brij 30. Uspekhi v khimii i khimicheskoy tekhnologii [Advances in chemistry and chemical technology], 2016, vol. 30, no. 12, pp. 46–48 (In Russian).
  26. Guzeeva T. I., Guzeev V. V., Leonova L. A., Lelyuk O. A., Krikunenko A. S., Shatokhina Yu. V. Obtaining hydroxyapatite powder at liquid-phase synthesis. Izvestiya Tomskogo politekhnicheskogo universiteta [Bulletin of the Tomsk Polytechnic University], 2009, vol. 315, no. 3, pp. 47–50 (In Russian).
  27. Hench L. L. Bioceramics. Journal of the American Ceramic Society, 1998, vol. 81, issue 7, pp. 1705–1728. DOI: 10.1111/j.1151-2916.1998.tb02540.x.
  28. Yeong K. C. B., Wang J., Ng S. C. Mechanochemical synthesis of nanocrystalhydroxyapatite from CaO and CaHPO4. Biomaterials, 2001, vol. 22, no. 20, pp. 2705–2712. DOI: 10.1016/s0142-9612(00)00257-x.
  29. Nikolaev A. L., Gopin A. V., Severin A. V., Rudin V. N., Mironov M. A., Dezhkunov N. V. Ultrasonic synthesis of hydroxyapatite in non-cavitation and cavitation modes. Ultrasonics – Sonochemistry, 2018, vol. 44, pp. 390–397. DOI: 10.1016/j.ultsonch.2018.02.047.
  30. Chen J. Regulatory synthesis and characterization of hydroxyapatite nanocrystals by a microwaveassisted hydrothermal method. Ceramics International, 2020, vol. 46, issue 2, pp. 2185–2193. DOI: 10.1016/j.ceramint.2019.09.203.
  31. Votyakov S. L., Kiseleva D. V., Sadykova N. O., Smirnov N. G., Shchapova Yu. V. Fiziko-khimicheskiye kharakteristiki iskopayemykh kostnykh ostatkov mlekopitayushchikh i problema otsenki ikh otnositelʼnogo vozrasta. V 2 chastyakh. Chastʼ 2: IK- i radiospektroskopiya, mikroskopiya [Physicochemical characteristics of fossilized mammal bone remains and the problem of their relative age. In 2 parts. Part 2: IRand radiospectroscopy, microscopy]. Yekaterinburg, Goshchitskiy Publ., 2009. 82 p.
  32. Solonenko A. P. Synthesis of hydroxyapatite and amorphous calcium silicate mixtures. Sovremennyye nauchnyye issledovaniya i innovatsii [Modern scientific researches and innovations], 2015, no. 10 (54), pp. 35–40 (In Russian).
  33. Boldeskul I. E., Samchenko Yu. M., Sukhodub L. B., Ulʼberg Z. R., Sukhodub L. F., Bereza L. I. Application of vibrational spectroscopy in express analysis of acrylic hydrogel and hydroxyapatite based composite materials. Metody i obʼʼyekty khimicheskogo analiza [Methods and objects of chemical analysis], 2009, vol. 4, no. 1, pp. 92–96 (In Russian).
  34. Ahmed M. A., Mansour S. F., El-dek S. I., Abd-Elwahab S. M., Ahmed M. K. Characterization and annealing performance of calcium phosphate nanoparticles synthesized co-precipitation method. Ceramics International, 2014, vol. 40, issue 8, pp. 12807–12820. DOI: 10.1016/j.ceramint.2014.04.135.
30.04.2021