RECUPERATIVE AIR HEATER FOR INDUSTRIAL FURNACE

UDC 536.24:66.045.12

  • Volodin Viktor Ivanovich – DSc (Engineering), Professor, the Department of Energysaving, Hydraulics and Heat Engineering. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: volvic@mail.ru

Key words: air heater, utilizer, flue gases, air, calculation method, convective and radiant heat transfer, optimal parameters, computational experiment.

For citation: Volodin V. I. Recuperative air heater for industrial furnace. Proceedings of BSTU, issue 2, Chemical Engineering, Biotechnologies, Geoecology, 2021, no. 2 (247), pp. 126–132 (In Russian). DOI: https://doi.org/10.52065/2520-2669-2021-247-2-126-132.

Abstract

The method of thermal-hydraulic calculation of a three-flow recuperative air heater with optimization of parameters is presented. A feature of the considered schemes of air heaters is the presence of one flow of the heating medium − flue gases and two flows of the heated medium − air. The goal function is expressed as a closed system of equations. The results of a computational experiment with recommendations are given, allowing you to choose the optimal air heater for the given conditions.

Analysis of the problem shows that there are two tasks related to the issue under consideration. The first task is to develop a method for thermohydraulic calculation of high-temperature air heaters with complex radiation and convective heat exchange. The second includes the choice of the optimal scheme among the alternative range of air heaters. Both tasks are interrelated and require a unified approach to their solution. At present, a comprehensive approach to solving this problem has not been properly reflected in the special literature, both in terms of choosing a scheme and calculating it for the required parameters.

This article discusses alternative schemes of three-flow high-temperature recuperative air heaters and provides an integral method for calculating them, taking into account the heat transfer from semitransparent flue gases. Based on the analysis of the results of the computational experiment, recommendations are given on the choice of the optimal air heater circuit.

References

  1. Teben’kov B. P. Rekuperatory dlya promyshlennykh pechey [Recuperators for industrial furnaces]. Moscow, Metallurgiya Publ., 1975. 296 p.
  2. Kaz’mina O. V. Tekhnologicheskiy rezhim steklovareniya v promyshlennykh pechakh [Technological mode of glass melting in industrial furnaces]. Available at: http://moodle32.lms.tpu.ru/mod/book/tool/print/index.php?id=856 (accessed 31.01.2021).
  3. Kirillov P. L., Yur’yev Yu. S., Bobkov V. P. Spravochnik po teplogidravlicheskim raschetam (Yadernyye reaktory, teploobmenniki, parogeneratory) [Handbook on thermal-hydraulic calculations (Nuclear reactors, heat exchangers, steam generators)]. Moscow, Energoatomizdat Publ., 1990. 360 p.
  4. Kern D., Kraus A. Razvityye poverkhnosti teploobmena [Extended surface heat transfer]. Moscow, Energiya Publ., 1977. 464 p.
  5. Kutateladze S. S. Teploperedacha i gidrodinamicheskoye soprotivleniye [Heat transfer and hydrodynamic resistance]. Moscow, Energoatomizdat Publ., 1990. 367 p.
  6. Spravochnik po teploobmennikam. V 2 tomakh. Tom 1 [Handbook for heat exchangers. In 2 vol. Vol. 1]. Moscow, Energoatomizdat Publ., 1987. 560 p.
  7. Blokh A. G., Zhuravlev Yu. A., Ryzhkov L. N. Teploobmen izlucheniyem. Spravochnik [Heat exchange by radiation. Handbook]. Moscow, Energoatomizdat Publ., 1991. 432 p.
  8. Teplovoy raschet kotlov. Normativnyy metod [Thermal calculation of boilers. The normative method]. Saint Petersburg, Tsentral’nyy kotloturbinnyy institut Publ., 1998. 260 p.
  9. Siegel R., Howell J. Thermal radiation heat transfer. New York, McGraw-Hill Book Company, 1972. 987 p. (Russ. ed.: Zigel R., Khauell Dzh. Teploobmen izlucheniem. Moscow, Mir Publ., 1975. 936 p.).
  10. Isayev S. I., Kozhinov I. A., Kofanov V. I., Leontyev A. I., Mironov B. M., Nikitin V. M., Petrazhitskiy G. B., Khvostov V. I., Chukayev A. G., Shishov E. V., Shkola V. V. Teoriya teplomassoobmena [Theory of heat and mass transfer]. Moscow, N. E. Bauman MGTU, 2018. 462 p.
  11. Petukhov B. S., Genin L. G., Kovalev S. A. Teploobmen v yadernykh energeticheskikh ustanovkakh [Heat exchange in nuclear power plants]. Moscow, Energoatomizdat Publ., 1986. 472 p.
  12. Volodin V. I., Mikhalevich A. A. Optimization of air-cooled heat exchangers. Teploenergetika [Thermal Power], 1994, no. 8, pp. 43–47 (In Russian).
  13. Bazhan P. I., Kavenets G. E., Seliverstov V. M. Spravochnik po teploobmennym apparatam [Handbook of heat exchangers]. Moscow, Mashinostroyeniye Publ., 1989. 367 p.
23.04.2021