MATHEMATICAL MODEL FORECAST CHANGE ROUNDING RADIUS CUTTING EDGE KNIFE OF CHIPPER-CANTER MACHINES

UDC 674.914:674.338

  • Klepatski Ihar Kazimirovich − Assistant Lecturer, the Department of Automation of Industrial Processes and Electrical Engineering. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarurus). E-mail: lucky-35@mail.ru

  • Rapovets Vyacheslav Valer’yevich − PhD (Engineering), Associate Professor, Assistant Professor, the Department of Woodworking Machines and Tools. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarurus). E-mail: slavyan_r@mail.ru

Key words: mathematical model, knife, aggregate processing, durability, forecast, chipper canter.

For citation: Klepatski I. K., Rapovets V. V. Mathematical model forecast change rounding radius cutting edge knife of chipper-canter machines. Proceedings BSTU, issue 1, Forestry. Nature Management. Processing of Renewable resources, 2021, no. 2 (246), pp. 340–344 (In Russian).DOI: https://doi.org/10.52065/2519-402X-2021-246-44-340–344.

Abstract

The analysis of works on the methods of mathematical forecasting is carried out. Based on the results of experimental studies carried out on the basis of JSC Borisovskiy DOK to study the durability of woodcutting tools made of alloy steel 6CrС used on small-blade cutters of a canter-milling machine LINK VS22, a set of data was obtained for the cutting edge rounding from the volume of processed Scotch pine wood.

A direct study of the physical parameters of the model under study (for example, the radius of rounding of the cutting edge of a wood-cutting tool) cannot give a meaningful description for most of the output data (dynamics of the cutting edge durability, the quality of the lumber obtained, etc.) when performing a production (field) experiment. Nevertheless, they can serve as empirical models. A valid empirical model should adequately describe the observed parameters, and also be suitable for predicting the output parameters.

In the presented article, the possibility of describing by the least squares method the forecast of the loss of the cutting ability of the knife blade when milling with small-knife end-conical milling cutters is considered.

References

  1. Kougiya V. A. Izbrannyye trudy. Issledovaniya po teorii matematicheskoy obrabotki rezul’tatov izmereniy [Research on the theory of mathematical processing of measurement results]. St. Petersburg, PGUPS Publ., 2012. 447 p.
  2. Várhegyi G., Wang L., Skreiberg Ø. Non-isothermal kinetics: best-fitting empirical models instead of model-free methods. Journal of Thermal Analysis and Calorimetry, 2020, vol. 142, pp. 1043–1054.
  3. Frollo I., Andris P., Strolka I., Baciak L. A Least Square Method for Measurement and Optimisation in Selected Physical Experiments. Key Engineering Materials, 2005, pp. 295–296.
  4. Yeniay Ö., İşçi, Ö., Göktaş A., Çankaya M. Time Scale in Least Square Method. Available at: https://www.hindawi.com/journals/aaa/2014/354237/ (accessed 20.01.2020).
  5. Kolesnev A. S., Kotin A. I., Matveyeva T. A., Zotova S. A. Smoothing of experimental dependencies by the method of least squares. Sovremennyye naukoyemkiye tekhnologii [Modern high technologies], 2014, no. 5–2, pp. 193–195.
  6. Ayvazyan S. A. Prikladnaya statistika. Osnovy ekonometriki. [Applied statistics. Fundamentals of Econometrics. Vol. 2]. Moscow, Yuniti-Dana Publ., 2001. 432 p.
  7. Linnik U. V. Metod naimen’shikh kvadratov i osnovy matematiko-statisticheskoy teorii obrabotki nablyudeniy [The method of least squares and the foundations of the mathematical-statistical theory of observation processing]. Moscow, Gosudarstvennoye izdatel’stvo fiziko-matematicheskoy Literatury Publ, 1962. 354 p.
  8. Yong Chen, Elvin T. Choong, David M. Wetzel. Optimum Average Diffusion Coefficient: An Objective Index in Description of Wood Drying Data. Wood and Fiber Science, 1994, no. 3, pp. 412–420.
  9. Perry N. Peralta, Audimar P. Bangi. A nonlinear regression technique for calculating the average diffusion coefficient of wood during drying. Wood and Fiber Science, 2003, no. 3, pp. 401–408.
  10. Mazanik N. V. Modelirovaniye i optimizatsiya protsessov v derevoobrabotke. Metody postroyeniya, analiza i vizualizatsii matematicheskikh modeley [Modeling and optimization of processes in woodworking. Methods for constructing, analyzing and visualizing mathematical models]. Minsk, BGTU Publ., 2014. 161 p.
  11. Klepatskiy I. K., Rapovets V. V. Dynamics of the loss of the cutting ability of the blades of smallknife cutters during the aggregate processing of wood. Trudy BGTU [Proceedings of BSTU], issue 2, Forestry. Nature Management. Processing of Renevable resources, 2019, no. 2, pp. 298–303 (In Russian).
  12. Mitin I. V., Rusakov B. C. Analiz i obrabotka eksperimental’nykh dannykh [Analysis and processing of experimental data]. Moscow, Fizicheskiy fakul’tet MGU Publ., 2004. 44 p.
  13. Pizhurin A. A. Modelirovaniye i optimizatsiya protsessov derevoobrabotki [Modeling and optimization of woodworking processes]. Moscow, MGU Publ., 2004. 375 p.
  14. Rapovets V. V., Grinevich S. A., Burnosov N. V. Konstruktsiya i raschety frezerno-brusuyushchikh stankov [Construction and calculations of milling-canting machines]. Minsk, BGTU Publ., 2015. 82 p.
  15. Borovikov E. M., Fefilov L. A., Shestakov V. V. Lesopileniye na agregatnom oborudovanii [Sawmilling on aggregate equipment]. Moscow, Lesnaya promyshlennost’ Publ., 1985. 216 p.
  16. Bershadskiy A. L. Raschet rezhimov rezaniya drevesiny [Calculation of cutting modes of wood]. Minsk, Vysheyshaya shkola Publ., 1966. 176 p.
25.03.2021