POLYMERIC MATRIX COMPOSITION OF BIODEGRADABLE PACKAGE

UDC 543.2, 543.4, 545.5, 678.6, 678.7, 664.2

  • Rymovskaya Mariya Vasilʼyevna − PhD (Engineering), Assistant Professor, the Department of Biotechnology. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: rymovskaya_mv@mail.ru

  • Ratkevich Maksim Vadimovich − Process Engineer. LLC “Plasttrade M” (area no. 1, Metlichitsy village, Okalovskii village council, 223119, Logoisk district, Republic of Belarus). E-mail: panic44@mail.ru

  • Petrushenya Aleksandr Fedorovich − PhD (Engineering), Assistant Professor, the Department of Polymer Composite Materials. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: petralexf@gmail.com

  • Grebenchikova Irina Aleksandrovna − PhD (Engineering), Associate Professor, Assistant Professor, the Department of Biotechnology. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: gre@tut.by

  • Ragatka Dmitriy Anatolʼyevich − Chemical Engineer. CJSC “Greenair” (24, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: ragatka@avanta.by

Key words: biodegradable package, polymer material, corn starch, polylactide, lactic acid, terephthalic acid polymer, solubility, qualitative reaction, IR-spectroscopy, thermogravimetry.

For citation: Rymovskaya M. V., Ratkevich M. V., Petrushenya A. F., Grebenchikova I. A., Ragatka D. A. Polymeric matrix composition of biodegradable package. Proceedings of BSTU, issue 2, Chemical Engineering, Biotechnologies, Geoecology, 2022, no. 2 (259), pp. 195–209 (In Russian). DOI: https://doi.org/10.52065/2520-2669-2022-259-2-195-209.

Abstract

It is difficult to organize recycling for thin-walled and multilayer packaging made of various materials compositions, including materials that are difficult to destroy in the environment. The global trend of transition to biodegradable materials for the production of such products is also supported in the Republic of Belarus; packaging bags with conformity marks appear in retail sales, allowing them to be successfully composted in a mixture with plant and food waste. The study of the composition of the polymer matrix of such material became the study goal.

The research methods had covered the traditionally used methods for analyzing the polymer composition of both synthetic and natural origin. The presence of starch in the composition of the sample was qualitatively established, a low content of low molecular weight and ash substances, and the absence of nitrogencontaining organic substances were shown. The study of the solubility of the material sample in organic solvents and solutions of acids and alkalis made it possible to assume the multicomponent composition of the material sample and to estimate the size of starch particles. Acid hydrolysis of the material sample made it possible to establish the presence in polymer matrix composition of a relatively easily hydrolysable component with the release of acids, as well as polylactide. Comparison of the IR spectrum of the material sample with the library of spectra made it possible to reveal the presence of a terephthalic acid polymer. The presence of starch, polylactide and terephthalic acid polymer is confirmed by thermogravimetric analysis; their content in the material is estimated by the decrease in the sample weight upon heating.

References

  1. Beghetto V., Sole R., Buranello C., Al-Abkal M., Facchin M. Recent Advancements in Plastic Packaging Recycling: A Mini-Review. Materials (Basel), 2021, vol. 14, no. 17, pp. 4782–4806. DOI: 10.3390/ma14174782.
  2. About the phased reduction in the use of polymer packaging: Resolution of the Council of Ministers of the Republic of Belarus, 13.01.2020, no. 7. Available at: https://pravo.by/document/?guid=12551&p0=C22000007&p1=1 (accessed 02/15/2021) (In Russian).
  3. GOST EN 13432–2015. Requirements for the use of packaging through composting and biodegradation. Verification scheme and evaluation criteria for the distribution of packages by categories. Minsk, Gosstandart Publ., 2017. 27 p. (In Russian).
  4. Litvyak V. V., Lovkis Z. V. Fundamental and applied research of starch and starch products. Trudy BGU [Proceedings of BSU], 2014, vol. 9, part 2, pp. 152–163 (In Russian).
  5. Zakirova A. Sh., Kanarskaya Z. A., Mikhaylova O. S., Vasilenko C. V. Biodegradable film materials. Part 2. Biodegradable film materials based on natural, artificial and chemically modified polymers. Vestnik Kazanskogo tekhnologicheskogo universiteta [Bulletin of Kazan Technological University], 2014, pp. 114–121 (In Russian).
  6. Vilʼdanov F. Sh., Latypova F. N., Krasutskiy P. A., Chanyshev R. R. Biodegradable polymers – current state and prospects for use. Bashkirskiy khimicheskiy zhurnal [Bashkir Chemical Journal], 2012, vol. 19, no. 1, pp. 135–139 (In Russian).
  7. Kudryakova G. Kh., Kuznetsova L. S., Shevchenko E. G., Ivanova T. V. Biodegradable packaging in the food industry. Pishchevaya promyshlennostʼ [Food Industry], 2006, no. 6, pp. 52–54 (In Russian).
  8. Processing of Bioplastics: a guideline / Institute for Bioplastics and Biocomposites. Available at: https://www.ifbb-hannover.de/files/IfBB/downloads/EV_Processing-of-Bioplastics-2016.pdf (accessed 09.06.2022).
  9. Biopolymers facts and statistics 2020 Production capacities, processing routes, feedstock, land and water use / Institute for Bioplastics and Biocomposites. Available at: https://www.ifbbhannover.de/files/IfBB/downloads/faltblaetter_broschueren/f+s/Biopolymers-Facts-Statistics-2020.pdf (accessed 20.11.2020).
  10. Fully degradable bags will appear in stores. They are from corn. Belorusskiye novosti [Belarusian News], 06/13/2019. Available at: https://naviny.online/article/20190613/1560433311-v-magazinahpoyavyatsya-polnostyu-razlagaemye-pakety-oni-sdelany-iz (accessed 20.11.2020) (In Russian).
  11. Tregubov N. N., Zharova E. Ya., Zhushman A. I., Sidorova E. K. Tekhnologiya krakhmala i krakhmaloproduktov [Technology of starch and starch products]. Moscow, Legkaya i pishchevaya promyshlennostʼ Publ., 1981. 472 p. (In Russian).
  12. Yagofarov D. Sh., Kanarskiy A. V., Sidorov Yu. D., Polivanov M. A. Physical And Chemical Properties Of Potato Starch. Vestnik Kazanskogo tekhnologicheskogo universiteta [Bulletin of Kazan Technological University], 2012, vol. 15, no. 12, pp. 212–215 (In Russian).
  13. Litvyak V., Moskva V., Romashko O., Yurkshtovich N., Kaputsky F. Study of the features of the mechanism of chemical modification of starch. Nauka i innovatsii [Science and innovations], 2012, vol. 115, no. 9, pp. 64–69 (In Russian).
  14. Litvyak V. V., Batyan A. N., Kravchenko V. A. Modification of the physicochemical and ecological properties of starch as a result of its electron irradiation. Zhurnal Belorusskogo gosudarstvennogo universiteta. Ekologiya [Journal of the Belarusian State University. Ecology], 2018, no. 3, pp. 62–72 (In Russian).
  15. Litvyak V. V., Moskva V. V. Modern highly efficient technologies for obtaining physically modified starches. Energosberegayushchiye tekhnologii i tekhnicheskiye sredstva v selʼskokhozyaystvennom proizvodstve: doklady Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Energy-saving technologies and technical means in agricultural production: reports of the International Scientific and Practical Conference]. Nesvizh, 2008, part 2, pp. 176–180 (In Russian).
  16. Chotiprayon P., Chaisawad B., Yoksan R. Thermoplastic cassava starch/poly(lactic acid) blend reinforced with coir fibres. International Journal of Biological Macromolecules, 2020, vol. 156, рр. 960–968. DOI: 10.1016/j.ijbiomac.2020.04.121.
  17. Ayumi Shirai M., Bonametti Olivato J., Salomão Garcia P., Maria Olivera Müller C., Victória Eiras Grossmann M., Yamashita F. Thermoplastic starch/polyester films: effects of extrusion process and poly (lactic acid) addition. Material Science and Engineering: C. Materials for biological application, 2013, vol. 33, no. 7, pp. 4112–4117. DOI: 10.1016/j.msec.2013.05.054.
  18. GOST 29305–92. Corn. Moisture determination method (crushed and whole grains). Moscow, IPK Izdatelʼstvo standartov Publ., 1992. 15 p. (In Russian).
  19. GOST 10847–2019. Grain. Ash content determination methods. Moscow, Standartinform Publ., 2019. 23 p. (In Russian).
  20. Voskresenskiy P. I. Tekhnika laboratornykh rabot [Technique of laboratory work]. Moscow, Khimiya Publ., 1973. 717 p. (In Russian).
  21. Markevich R. M., Grebenchikova I. A., Rymovskaya M. V. Biotekhnologicheskaya pererabotka promyshlennykh otkhodov. Laboratornyy praktikum [Biotechnological processing of industrial waste. Laboratory practice]. Minsk, BGTU Publ., 2019. 153 p. (In Russian).
  22. GOST 10846–91. Grain and products of its processing. Protein determination method. Moscow, Standartinform Publ., 2009. 9 p. (In Russian).
  23. GOST 32902–2014. Starch and starch products. Terms and definitions. Moscow, Standartinform Publ., 2019. 20 p. (In Russian).
  24. GOST 490–2006. Food additives. Lactic acid E270. Specifications. Moscow, Standartinform Publ., 2007. 47 p. (In Russian).
  25. Artemenko A. I. Organicheskaya khimiya [Organic chemistry]. Moscow, Vysshaya shkola Publ., 1987. 536 p. (In Russian).
  26. Danchenko E. O. Biologicheskaya khimiya [Biological chemistry]. Vitebsk, VGU imeni P. M. Masherova Publ., 2012. 48 p. (In Russian).
  27. GOST 32159–2013. Corn starch. General specifications. Moscow, Standartinform Publ., 2019. 12 p. (In Russian).
  28. GOST 13634–90. Corn. Requirements for procurement and supply. Moscow, Standartinform Publ., 2010. 10 p. (In Russian).
  29. Khimiya uglevodov [Chemistry of carbohydrates] / comp.: Yu. A. Ovcharova, I. I. Bochkareva. Maykop, Izdatelʼstvo “IP Kucherenko V. O.” Publ., 2019. 125 p. (In Russian).
  30. Spassky N. A. Kley dlya perepletnykh rabot [Glue for binding works]. Moscow, Iskusstvo Publ., 1953. 264 p. (In Russian).
  31. Chernaya N. I., Zholnerovich N. V. Tekhnologiya shchelochnoy tsellyulozy [Technology of alkaline cellulose]. Minsk, BGTU Publ., 2014. 71 p. (In Russian).
  32. Dye for hexane in a three-phase phase system. Forum khimikov [Forum of Chemists]. Available at: http://www.chemport.ru/forum/viewtopic.php?t=31202 (accessed 20.02.2021) (In Russian).
  33. Polimernyye materialy [Polymeric materials] / comp.: V. G. Antonov, V. N. Krutova. Naberezhnyye Chelny, KamPI Publ., 2003. 20 p. (In Russian).
  34. Educational program on chemicals or what dissolves in what. Tekhnologiya pechati 3D segodnya [3D printing technology today]. Available at: https://3dtoday.ru/blogs/3dlab/introduction-to-chemicals-orthat-what-is-dissolved (accessed 13.12.2021) (In Russian).
  35. Lovkis Z. V., Litvyak V. V., Petyushev N. N. Tekhnologiya krakhmala i krakhmaloproduktov [Technology of starch and starch products]. Minsk, Asobny Publ., 2007. 178 p. (In Russian).
  36. Struktura i fiziko-khimicheskiye svoystva tsellyuloz i nanokompozitov na ikh osnove [Structure and physicochemical properties of celluloses and nanocomposites based on them] / ed. L. A. Aleshina, V. A. Gurtova, N. V. Melekh. Petrozavodsk, Izdatel’stvo PetrGU Publ., 2014. 240 p. (In Russian).
  37. Kholkin Yu. I. Tekhnologiya gidroliznykh proizvodstv [Technology of hydrolysis production]. Moscow, Lesnaya promyshlennostʼ Publ., 1989. 496 p. (In Russian).
  38. Kilin N. L., Kimbaev K., Minusenko M. S., Kroshechkin A. D. Utilization of polymer waste based on polylactide. Khimiya i khimicheskaya tekhnologiya v XXI veke: materialy XVIII Mezhdunarodnoy nauchno-prakticheskoy konferentsii studentov i molodykh uchenykh imeni professora L. P. Kuleva [Chemistry and chemical technology in the XXI century: materials of the XVIII International Scientific and Practical Conference of Students and Young Scientists named after Professor L. P. Kulev]. Tomsk, 2017, pp. 408–409 (In Russian).
  39. Pyrkh T. V., Shcherbina L. A., Mozheiko Yu. M. Thermal destruction of polylactide and its recycling. Neftekhimiya – 2018: materialy I Mezhdunarodnogo nauchno-tekhnicheskogo foruma po khimicheskim tekhnologiyam i po neftepererabotke [Petrochemistry – 2018: materials of the I International Scientific and Technical Forum on Chemical Technologies and Oil Refining]. Minsk, 2018, part 1, pp. 151–153 (In Russian).
  40. Tarasevich B. N. IK-spektry osnovnykh klassov organicheskikh soyedineniy. Spravochnyye materialy [IR spectra of the main classes of organic compounds. Reference materials]. Moscow, MGU imeni M. V. Lomonosova Publ., 2012. 55 p. Available at: http://www.chem.msu.su/rus/teaching/tarasevich/Tarasevich_IR_tables_29-02-2012.pdf. (accessed 13.12.2021) (In Russian).
  41. Lear G., Kingsbury J. M., Franchini S., Gambarini V., Maday S. D. M., Wallbank J. A., Weaver L., Pantos O. Plastics and the microbiome: impacts and solutions. Environmental Microbiome, 2021, vol. 16, no. 1, pp. 2–20. DOI: 10.1186/s40793-020-00371-w.
  42. Krul’ L. P., Polikarpov A. P., Klimovtsova I. A. Thermomechanical properties of polylactides. Vestnik BGU [Bulletin of BSU], 2007, issue 2, no. 3, pp. 40–46 (In Russian).
  43. Khimicheskaya entsiklopediya [Chemical Encyclopedia] / by I. L. Knunyants. Moscow, Bolʼshaya rossiyskaya entsiklopediya Publ., 1992. 641 p. (In Russian).
  44. Khimicheskaya entsiklopediya [Chemical Encyclopedia] / by N. S. Zefirov. Moscow: Bolʼshaya rossiyskaya entsiklopediya Publ., 1995. 639 p. (In Russian).
  45. GOST 12.1.041–83. System of labor safety standards. Fire and explosion safety of combustible dusts. General requirements. Moscow, Gosudarstvennyy komitet SSSR po standartam Publ., 1984. 22 p. (In Russian).
  46. Kostenko V. G., Ovchinnikov A. E., Gorbatov V. M. Proizvodstvo krakhmala [Starch production]. Moscow, Legkaya i pishchevaya promyshlennostʼ Publ., 1983. 200 p. (In Russian).
  47. Nikitin N. I. Khimiya drevesiny i tsellyulozy [Chemistry of wood and cellulose]. Moscow, Nauka Publ., 1962. 713 p. (In Russian).
  48. Korol’chenko A. Ya., Korol’chenko D. A. Pozharovzryvoopasnostʼ veshchestv i materialov i sredstva ikh tusheniya [Fire and explosion hazard of substances and materials and means of extinguishing them]. Moscow, Ass. “Pozhnauka” Publ., 2004, part 2. 774 p. (In Russian).
  49. Borisov E. Biodegradable polymers in the spotlight. Khimicheskiy zhurnal [Chemical journal], 2005, no. 4, pp. 68–71 (In Russian).
  50. Braginsky G. I., Timofeev E. N. Tekhnologiya magnitnykh lent [Technology of magnetic tapes]. Moscow, Khimiya Publ., 1987. 328 p. (In Russian).
  51. Entsiklopediya polimerov. T. 3. Polioksadiazoly–Ya [Encyclopedia of polymers. Vol. 3. Polyoxadiazoles-I] / ed. V. A. Kabanov. Moscow, Sovetskaya entsiklopediya Publ., 1977. 1152 p. (In Russian).
  52. Nazrin A., Sapuan S. M., Zuhri M. Y. M., Ilyas R. A., Syafiq R., Sherwani S. F. K. Nanocellulose Reinforced Thermoplastic Starch (TPS), Polylactic Acid (PLA), and Polybutylene Succinate (PBS) for Food Packaging Applications. Frontiers in Chemistry, 2020, vol. 8, no. 213, pp. 213–215. DOI: 10.3389/fchem.2020.00213.
  53. Auras R., Harte B., Selke S. An overview of polylactides as packaging materials. Macromolecular Bioscience, 2004, vol. 4, no. 9, pp. 835–864. DOI: 10.1002/mabi.200400043.
  54. Jiang L., Wolcott M. P., Zhang J. Study of biodegradable polylactide/poly(butylene adipate-coterephthalate) blends. Biomacromolecules, 2006, vol. 7, no. 1, pp. 199–207. DOI: 10.1021/bm050581q.
  55. Nofar M., Sacligil D., Carreau P. J., Kamal M. R., Heuzey M.-C. Poly (lactic acid) blends: Processing, properties and applications. International Journal of Biological Macromolecules, 2019, vol. 125, pp. 307–360. DOI: 10.1016/j.ijbiomac.2018.12.002.
15.06.2022