PROPERTIES OF ELASTOMER COMPOSITES FILLED WITH CARBON-SILICON COMPOSITE

UDC 678.046.3

  • Bobrova Valeriya Vladimirovna − PhD student. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: lerik_bobrik94@mail.ru

  • Prokopchuk Nikolay Romanovich − Corresponding Member of the National Academy of Sciences of Belarus, DSc (Chemistry), Professor, Professor, the Department of Polymer Composite Materials. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: nrprok@gmail.com

  • Efremov Sergey Anatol’yevich − Academician of Kazakhstan National Academy of Natural Sciences, DSc (Chemistry), Professor, Deputy Director of the Center for Physico-Chemical Methods of Research and Analysis. Al-Farabi Kazakh National University (71, Al-Farabi Ave., 050040, Almaty, Republic of Kazakhstan). E-mail: efremsa@mail.ru

  • Nechipurenko Sergey Vital’yevich − leading researcher, PhD (Engineering), Associate Professor, Head of the Laboratories of Composite Materials of the Center of Physico-Chemical Methods of Research and Analysis. Al-Farabi Kazakh National (71, Al-Farabi Ave., 050040, Almaty, Republic of Kazakhstan). E-mail: nechipurenkos@mail.ru

Key words: rice husk, nitrile butadiene rubber, plastoelastic properties, elastic-strength characteristics.

For citation: Bobrova V. V., Prokopchuk N. R., Efremov S. A., Nechipurenko S. V. Properties of elastomer composites filled with carbon-silicon composite. Proceedings of BSTU, issue 2, Chemical Engineering, Biotechnologies, Geoecology, 2022, no. 2 (259), pp. 156–164 (In Russian). DOI: https://doi.org/10.52065/2520-2669-2022-259-2-156-164.

Abstract

The main purpose of this work is to study the effect of replacing industrial semi-active carbon black grade N550 with a carbon-silicon composite (CCS) of plant origin on the main plastoelastic and elastic-strength characteristics of industrial elastomer compositions intended for the manufacture of rubber products. The objects of the study were rubber compounds based on nitrile rubber filled with semi-active carbon black grade N550 and CSS in various proportions. A study of the Mooney viscosity of rubber compounds showed that the replacement of N550 with CSS leads to a decrease in viscosity by 16.5–21.2%, regardless of the dosage of CSS. Determination of the kinetic parameters of the process of vulcanization of rubber compounds revealed that with the introduction of CCC there is an increase in the time to reach the optimum vulcanization by 70.1–75.5%, while the resistance of rubber to premature vulcanization increases by 29.4–41.7% compared with the composition containing N550. The determination of the main elastic-strength characteristics showed that the use of CSS and N550 in the ratio of 10 / 80 and 20 / 70 in the elastomeric composition makes it possible to obtain vulcanizates with a level corresponding to the requirements of the technical specifications for an industrial rubber compound in terms of conditional tensile strength, relative elongation at rupture, hardness of rubbers according to Shore A, relative compression set.

References

  1. Qiao H., Chao M., Hui D., Lui J., Zheng J., Lei W., Zhou X., Wang R., Zhang L. Enhanced interfacial interaction and excellent performance of silica/epoxy group-functionalized styrene-butadiene rubber (SBR) nanocomposites without any coupling agent. Composites Part B: Engineering, 2017, vol. 114, pp. 356–364.
  2. Xue B., Wang X., Sui J., Xu D., Zhu Y., Liu X. A facile ball milling method to produce sustainable pyrolytic rice husk biofiller for reinforcement of rubber mechanical property. Industrial Crops and Products, 2019, vol. 141, 111791. DOI: 10.1016/j.indcrop.2019.111791.
  3. Song Y., Zeng L., Zheng Q. Understanding the reinforcement and dissipation of natural rubber compounds filled with hybrid filler composed of carbon black and silica. Chinese Journal of Polymer Science, vol. 35, no. 11, pp. 1436–1446. DOI: 10.1007/s10118-017-1987-5.
  4. Velga V. D., Rossignol T. M., Crespo J. da S., Carli L. N. Tire tread compounds with reduced rolling resistance and improved wet grip. Journal of Applied Polymer Science, 2017, vol. 134, no. 39, 45334.
  5. Xiong X., Wang J., Jia H., Ding L., Dai X., Fei X. Synergistic Effect of Carbon Black and Carbon–Silica Dual Phase Filler in Natural Rubber Matrix. Polymer Composites, 2014, vol. 35, no. 8, pp. 1466–1472.
  6. Morsi S. M., Pakzad A., Amin A., Yassar R. S., Heiden P. A. Chemical and nanomechanical analysis of rice husk modified by ATRP-grafted oligomer. Journal of Colloid and Interface Science, 2011, vol. 360, no. 2, pp. 377–385.
  7. Shcherbakova T. P., Vaseneva I. N. A Biogenic Silica Synthesis Method. Theoretical Foundations of Chemical Engineering, 2020, vol. 54, pp. 297–303.
  8. Da Costa H. M., Visconte L. L. Y., Nunes R. C. R., Furtado C. R. G. Mechanical and Dynamic Mechanical Properties of Rice Husk Ash–Filled Natural Rubber Compounds. Journal of Applied Polymer Science, 2002, vol. 83, pp. 2331–2346. DOI: 10.1002/app.10125.
  9. Da Costa H. M., Visconte L. L. Y., Nunes R. C. R., Furtado C. R. G. Rice Husk Ash Filled Natural Rubber. I. Overall Rate Constant Determination for the Vulcanization Process from Rheometric Data. Journal of Applied Polymer Science, 2003, vol. 87, pp. 1194–1203. DOI: 10.1002/app.11452.
  10. Moresco S., Scarton C. T., Giovanela M., Carli L. N., Bielinski D. M., Crespo J. S. Natural rubber compositions with the partial/total replacement of carbon black/naphthenic oil by renewable additives: Rice husk ash and cashew nut oil. Journal of Applied Polymer Science, 2019, vol. 137, no. 4, 48134. DOI: 10.1002/app.48314.
  11. Dominic M., Joseph R., Sabura Begum P., Kanoth B. P., Chandra J., Thomas S. Green Tire Technology: Effect of Rice Husk Derived Nanocellulose (RHNC) in Replacing Carbon Black (CB) in Natural Rubber (NR) Compounding. Carbohydrate Polymers, 2019, vol. 230, 115620. DOI: 10.1016/j.carbpol.2019.115620.
  12. Da Costa H. M., Visconte L. L. Y., Nunes R. C. R., Furtado C. R. G. Rice Husk Ash Filled Natural Rubber. III. Role of Metal Oxides in Kinetics of Sulfur Vulcanization. Journal of Applied Polymer Science, 2003, vol. 90, pp. 1519–1531. DOI: 10.1002/APP.12684.
  13. Xinyu L., Xiaodong C., Liu Y., Hongzhuo C., Yumei T., Zichen W. A review on recent advances in the comprehensive application of rice husk ash. Research on Chemical Intermediates, 2015, vol. 42, no. 2, pp. 893–913. DOI: 10.1007/s11164-015-2061-y.
  14. Sae-oui P., Rakdee C., Thanmathorn P. Use of Rice Husk Ash as Filler in Natural Rubber Vulcanizates: In Comparison with Other Commercial Fillers. Journal of Applied Polymer Science, 2002, vol. 83, pp. 2485–2493. DOI: 10.1002/app.10249.
  15. França A. A., Schultz J., Borges R., Wypych F., Mangrich A. S. Rice Husk Ash as Raw Material for the Synthesis of Silicon and Potassium Slow-Release Fertilizer. Journal of the Brazilian Chemical Society, 2017, vol. 28, no. 11, pp. 2211–2217.
  16. Benassi L., Bosio A., Dalipi R., Borgese L., Rodella N., Pasquali M., Depero L. E., Bergese P., Bontempi E. Comparison between rice husk ash grown in different regions for stabilizing fly ash from a solid waste incinerator. Journal of Environmental Management, 2015, vol. 159, pp. 128–134.
  17. Bobrova V. V., Prokopchuk N. R., Efremov S. A., Nechipurenko S. V. Сarbon-silicon filler for elastomer compositions. Trudy BGTU [Proceedings of BSTU], issue 2, Chemical Engineering, Biotechnologies, Geoecology, 2022, no. 1 (253), pp. 89–95 (In Russian).
  18. Lui Z., Zhang Y. Enhanced mechanical and thermal properties of SBR composites by introducing graphene oxide nanosheets decorated with silica particles. Composites Part A: Applied Science and Manufacturing, 2017, vol. 102, pp. 236–242.
  19. GOST 10722–76. Method for determining the viscosity and the ability to premature vulcanization / Moscow, Izdatel’stvo standartov Publ., 1976. 9 p. (In Russian).
  20. GOST 12535–84. A mixture of rubber. Method for the determination of vulcanization characteristics vulcameter. Moscow, Izdatel’stvo standartov Publ., 1985. 33 p. (In Russian).
  21. GOST 270–75. Method for determining elastic-strength properties under tension. Moscow, Izdatel’stvo standartov Publ., 1975. 29 p. (In Russian).
  22. GOST 9.029–74. Test methods for aging resistance under static compression deformation. Moscow, Izdatel’stvo standartov Publ., 1982. 7 p. (In Russian).
  23. GOST 263–75. Shore A hardness determination method. Moscow, Izdatel’stvo standartov Publ., 1989. 7 p. (In Russian).
  24. Cataldo F. Evaluation of pyrolytic oil from scrap tires as plasticizer of rubber compounds. Progress in Rubber, Plastics and Recycling Technology, 2006, vol. 22, no. 4, pp. 243–252.
  25. Grishin B. S. Teoriya i praktika usileniya elastomerov. Sostoyaniye i napravleniya razvitiya [Theory and practice of strengthening elastomers. State and directions of development]. Kazan’, KNITU Rubl., 2016. 420 p. (In Russian).
  26. Zhovner N. A., Chirkova N. V., Hlebov G. A. Struktura i svoystva materialov na osnove elastomerov. [Structure and properties of materials based on elastomers]. Kirov, VyatGU Publ.; Omsk, Filial RosZITLP Publ., 2003. 276 p. (In Russian).
  27. Dontsov A. A. Protsessy strukturirovaniya elastomerov [Structuring processes for elastomers]. Moscow, Khimiya Rubl.,1978. 287 p. (In Russian).
  28. Ovcharov V. I., Burmistr M. V., Tyutin V. A. Svoystva rezinovykh smesey i rezin: otsenka, regulirovaniye, stabilizatsiya [Properties of rubber compounds and rubbers: assessment, regulation, stabilization]. Moscow, Sant-TM Rubl., 2001. 400 p. (In Russian).
  29. Averko-Antonovich I. Yu., Bikmullin R. T. Metody issledovaniya struktury i svoystv polimerov [Metods for studing the structure and properties of polymers]. Kazan’, KGTU Rubl., 2002. 604 p. (In Russian). 
08.06.2022