THERMAL INSULATION PANELS FROM TREE BARK

UDC 674.81

  • Pásztory Zoltán – Senior Researcher, Innovation center. University of Sopron (4, Bajcsy-Zsilinszky str., 9400, Sopron, Hungary). E-mail: pasztory.zoltan@uni-sopron.hu

  • Börcsök Zoltán – Researcher, Innovation center. University of Sopron (4, Bajcsy-Zsilinszky str., 9400, Sopron, Hungary). E-mail:borcsok.zoltan@uni-sopron.hu

  • Bazhelka Ihar Kanstantsinavich – PhD (Engineering), Assistant Professor, Head of the Department of Woodworking Technology. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail:bikbstu@mail.ru

  • Kanavalava Anastasiya Alyaksandrauna – Junior Researcher, the Department of Woodworking Technology. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: anastasiyakonov@gmail.com

  • Meleshko Olga Viktorovna – Engineer, FLLC “Unomedikal” (50, Zavodskaya str., 222750, Fanipol, Dzerzhinsk region, Republic of Belarus). E-mail: volhamialeshka@outlook.com

Key words: tree bark, thermal insulation, reinforcement, glass fiber.

For citation: Pásztory Z., Börcsök Z., Bazhelka I. K., Kanavalova A. A., Meleshko O. V. Thermal insulation panels from tree bark. Proceedings of BSTU, issue 1, Foresty. Nature Management. Processing Renewable of Resources, 2021, no. 1 (240), pp. 141–149. DOI: https://doi.org/10.52065/2519-402X-2021-240-19-141-149.

Abstract

To reduce the energy consumption of buildings, natural-based insulation materials are being investigated today. The annual million tones amount of bark waste allows it to be used as an alternative material with the least impact on the environment. Various additives are being investigated to improve the physical and mechanical properties of bark insulation panels. In this study, the mechanical, physical, thermal properties of 11 types of composite insulating panels from the bark of the Pannónia poplar (Populus × euramericana cv. Pannónia) were manufactured and investigated. The bark panels were supplemented and reinforced by short glass fibers, overlaying fibreglass mesh, fibreglass mat and fibreglass woven fabric and two types of paper, as well as an inner glass fiber mesh. The target density of the panels was 350 kg/m³, and the thermal conductivity of the panels varied from 0.067 to 0.078 W/mK. Although the thermal conductivity of artificial insulation materials is lower, panels made of natural materials have less impact on the environment. Glass fiber reinforcement had little effect on thermal conductivity and mechanical properties. The preliminary heat treatment of the raw material influenced the thermal conductivity due to changing the structure and the appearance of cavities. It had an effect on the density that determines thermal conductivity.

Чтобы снизить энергопотребление зданий, сегодня исследуются изоляционные материалы на натуральной основе. Ежегодное количество отходов коры в миллионы тонн позволяет использовать его в качестве альтернативного материала с наименьшим воздействием на окружающую среду. Изучаются различные добавки для улучшения физико-механических свойств изоляционных панелей из коры. В этом исследовании были изготовлены и исследованы механические, физические и термические свойства 11 типов композитных изоляционных панелей из коры тополя Паннония (Populus × euramericana cv. Pannónia). Панели из коры были дополнены и усилены короткими стекловолокнами, наложенными на них сеткой, матом и тканью из стекловолокна, двумя типами бумаги, а также внутренней сеткой из стекловолокна. Целевая плотность панелей составляла 350 кг/м³, а теплопроводность панелей варьировалась от 0,067 до 0,078 Вт/мК. Хотя теплопроводность искусственных изоляционных материалов ниже, панели из натуральных материалов оказывают меньшее воздействие на окружающую среду. Армирование стекловолокном оказало небольшое воздействие на теплопроводность и механические свойства. Предварительная термообработка сырья повлияла на плотность материала, определяющую теплопроводность.

References

  1. Pavel C. C., Blagoeva D. T. Competitive landscape of the EU’s insulation materials industry for energy-efficient buildings. Luxemburg, Publications Office of the European Union, 2018. 24 p.
  2. Zhou X., Zheng F., Li H., Lu C. An environment-friendly thermal insulation material from cotton stalk fibers. Energy and Buildings, 2010, no. 42, pp. 1070–1074.
  3. Volf M., Diviš J., Havlíka F. Thermal, moisture and biological behavior of natural insulating materials. Energy Procedia, 2015, no. 78, pp. 1599–1604.
  4. Schiavoni S., D’Alessandro F., Bianchi F., Asdrubali F. Insulation materials for the building sector: A review and comparative analysis. Renewable and Sustainable Energy Reviews, 2016, no. 62, pp. 988–1011.
  5. Pásztory Z., Mohácsiné R. I., Börcsök Z. Investigation of thermal insulation panels made of black locust tree bark. Construction and Building Materials, 2017, no. 147, pp. 733–735.
  6. Aydin I., Demirkir C., Colak S., Colakoglu G. Utilization of bark flours as additive in plywood manufacturing. Eur. J. Wood Prod., 2017, no. 75, pp. 63–69.
  7. Murphey W. K., Rishel L. E. Relative strength of boards made from bark of several species. Forest Products Journal, 1969, no. 19, pp. 52.
  8. Yemele M. C. N., Blanchet P., Cloutier A., Koubaa A. Effects of bark content and particle geometry on the physical and mechanical properties of particleboard made from black spruce and trembling aspen bark. Forest Products Journal, 2008, no. 58, pp. 48–56.
  9. Maloney T. M. Bark boards from four west coast softwood species. Forest Products Journal, 1973, no. 23, pp. 30–38.
  10. Nemli G., Çolakoğlu G. Effects of mimosa bark usage on some properties of particleboard. Turkish Journal of Agriculture and Forestry, 2005, no. 29, pp. 227–230.
  11. Cai Z. Selected properties of MDF and flakeboard overlaid with fibreglass mats. For. Prod. Journal, 2006, no. 56, pp. 142–146.
  12. Biblis E. J., Carino H. F. Flexural properties of southern pine plywood overlaid with fibreglassreinforced plastic. For. Prod. Journal, 2006, no. 50, pp. 34–36.
  13. Moradpour P., Pirayesh H., Gerami M., Jouybari I. R. Laminated strand lumber (LSL) reinforced by GFRP; mechanical and physical properties. Constr. Build. Mater., 2018, no. 158, pp. 236–242.
  14. Bal B. C. Flexural properties, bonding performance and splitting strength of LVL reinforced with woven glass fiber. Constr. Build. Mater., 2014, no. 51, pp. 9–14.
  15. Kizilkanat A. B., Kabay N., Akyüncü V., Chowdhury S., Akça A. H. Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study. Constr. Build. Mater., 2015, no. 100, pp. 218–224.
  16. Zolfagari A., Behravesh A. H., Shahi P. Comparison of mechanical properties of wood-plastic composites reinforced with continuous and noncontinuous glass fibers. Journal of Thermoplastic Composite Materials, 2015, no. 28, pp. 791–805.
  17. Maclean J. D. Thermal conductivity of wood. Heating, Piping & Air Conditioning, 1941, no. 13, pp. 380–391.
  18. Seborg R. M., Tarkow H., Stamm A. J. Effect of heat upon the dimensional stabilization of wood. Journal of Forest Product Res. Soc., 1973, no. 3, pp. 59–67.
  19. Korkut S., Aytin A., Taşdemír Ç., Gurău L. The transverse thermal conductivity coefficients of Wild cherry wood heat-treated using the Thermo Wood method. ProLigno, 2013, no. 9, pp. 649–683.
15.10.2020